A lithium polymer battery, or more correctly lithium-ion polymer battery (abbreviated as LiPo, LIP, Li-poly, lithium-poly and others), is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. High conductivity semisolid (gel) polymers form this electrolyte. These batteries provide higher specific energy than other lithium battery types and are used in applications where weight is a critical feature, such as mobile devices, radio-controlled aircraft and some electric vehicles.
Lithium-ion battery#History
LiPo cells follow the history of lithium-ion and lithium-metal cells which underwent extensive research during the 1980s, reaching a significant milestone with Sony's first commercial cylindrical Li-ion cell in 1991. After that, other packaging forms evolved, including the flat pouch format.
Lithium polymer cells have evolved from lithium-ion and lithium-metal batteries. The primary difference is that instead of using a liquid lithium-salt electrolyte (such as LiPF6) held in an organic solvent (such as EC/DMC/DEC), the battery uses a solid polymer electrolyte (SPE) such as poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA) or poly(vinylidene fluoride) (PVdF).
In the 1970s the original polymer design used a solid dry polymer electrolyte resembling a plastic-like film, replacing the traditional porous separator that is soaked with electrolyte.
The solid electrolyte can typically be classified as one of three types: dry SPE, gelled SPE and porous SPE. The dry SPE was the first used in prototype batteries, around 1978 by Michel Armand, and 1985 by ANVAR and Elf Aquitaine of France, and Hydro-Québec of Canada. From 1990 several organisations like Mead and Valence in the United States and GS Yuasa in Japan developed batteries using gelled SPEs. In 1996, Bellcore in the United States announced a rechargeable lithium polymer cell using porous SPE.
A typical cell has four main components: positive electrode, negative electrode, separator and electrolyte.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
You will learn about the bonding and structure of several important families of solid state materials. You will gain insight into common synthetic and characterization methods and learn about the appl
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
Explores the significance of SMES systems, superconductivity, and lithium-ion batteries, highlighting their roles in energy storage and global sustainability.
An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes charged by solar panels, or by converting fuel to electricity using fuel cells or a generator). EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft, and electric spacecraft.
A battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy.
A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, with no secondary source of propulsion (a hydrogen fuel cell, internal combustion engine, etc.). BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) for propulsion. They derive all power from battery packs and thus have no internal combustion engine, fuel cell, or fuel tank.
The current restrictions on the registration of combustion engines in different countries and the harmful impacts of fossil fuels on the environment and human health have motivated decision-makers to use batteries and/or fuel cells as alternatives for comb ...
EPFL2024
, ,
Layered cathodes are among the most promising cathodes for high-energy-density Li-ion batteries, yet hindered by the structural degradation from both bulk strain and surface oxygen loss at high voltage (above 4.5 V). Herein, we report a pre-fatigue trainin ...
Cambridge2024
,
Battery health prediction is significant while challenging for intelligent battery management. This article proposes a general framework for both short-term and long-term predictions of battery health under unseen dynamic loading and temperature conditions ...