Résumé
En mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique. L'interpolation en des points régulièrement espacés peut fort bien diverger même pour des fonctions très régulières (phénomène de Runge). Dans la version la plus simple (interpolation lagrangienne), on impose simplement que le polynôme passe par tous les points donnés. Étant donné un ensemble de n + 1 points, i.e. couples (xi , yi) (où les réels xi sont distincts 2 à 2, les yi pouvant être des réels, complexes ou éléments d'un espace vectoriel quelconque), on cherche à trouver un polynôme p (à coefficients de la même nature que les yi) de degré n au plus, qui vérifie : Le théorème de l'unisolvance précise qu'il n'existe qu'un seul polynôme p de degré inférieur ou égal à n défini par un tel ensemble de n + 1 points. L'interpolation d'Hermite consiste à chercher un polynôme qui non seulement prend les valeurs fixées aux abscisses données, mais dont également la dérivée, donc la pente de la courbe, prend une valeur imposée en chacun de ces points. Naturellement, il faut pour cela un polynôme de degré supérieur au polynôme de Lagrange. On peut aussi imposer encore la valeur des dérivées secondes, troisièmes, etc. en chaque point. La démarche de l'interpolation newtonienne utilisant les différences divisées est particulièrement adaptée pour construire ces polynômes. La méthode des splines consiste à chercher des fonctions polynômiales par morceaux, c'est-à-dire sur chaque sous-intervalle [xi-1,xi], mais de plus bas degré (typiquement 3 pour les splines cubiques), en choisissant les coefficients pour obtenir une fonction continue et dérivable également aux points xi .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.