Concept

Normal number

In mathematics, a real number is said to be simply normal in an integer base b if its infinite sequence of digits is distributed uniformly in the sense that each of the b digit values has the same natural density 1/b. A number is said to be normal in base b if, for every positive integer n, all possible strings n digits long have density b−n. Intuitively, a number being simply normal means that no digit occurs more frequently than any other. If a number is normal, no finite combination of digits of a given length occurs more frequently than any other combination of the same length. A normal number can be thought of as an infinite sequence of coin flips (binary) or rolls of a die (base 6). Even though there will be sequences such as 10, 100, or more consecutive tails (binary) or fives (base 6) or even 10, 100, or more repetitions of a sequence such as tail-head (two consecutive coin flips) or 6-1 (two consecutive rolls of a die), there will also be equally many of any other sequence of equal length. No digit or sequence is "favored". A number is said to be normal (sometimes called absolutely normal) if it is normal in all integer bases greater than or equal to 2. While a general proof can be given that almost all real numbers are normal (meaning that the set of non-normal numbers has Lebesgue measure zero), this proof is not constructive, and only a few specific numbers have been shown to be normal. For example, any Chaitin's constant is normal (and uncomputable). It is widely believed that the (computable) numbers , pi, and e are normal, but a proof remains elusive. Let Σ be a finite alphabet of b-digits, ^ω the set of all infinite sequences that may be drawn from that alphabet, and ^∗ the set of finite sequences, or strings. Let ∈ ^ω be such a sequence. For each a in Σ let _(, ) denote the number of times the digit a appears in the first n digits of the sequence S. We say that S is simply normal if the limit for each a. Now let w be any finite string in ^∗ and let _(, ) be the number of times the string w appears as a substring in the first n digits of the sequence S.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.