Row echelon formIn linear algebra, a matrix is in echelon form if it has the shape resulting from a Gaussian elimination. A matrix being in row echelon form means that Gaussian elimination has operated on the rows, and column echelon form means that Gaussian elimination has operated on the columns. In other words, a matrix is in column echelon form if its transpose is in row echelon form. Therefore, only row echelon forms are considered in the remainder of this article. The similar properties of column echelon form are easily deduced by transposing all the matrices.
Rank–nullity theoremThe rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the of f) and the nullity of f (the dimension of the kernel of f). It follows that for linear transformations of vector spaces of finite dimension, either injectivity or surjectivity implies bijectivity.
Sparse matrixIn numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.
Matrix similarityIn linear algebra, two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix P such that Similar matrices represent the same linear map under two (possibly) different bases, with P being the change of basis matrix. A transformation A ↦ P−1AP is called a similarity transformation or conjugation of the matrix A. In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that P be chosen to lie in H.
Zero elementIn mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, 0 + x = x + 0 = x. Some examples of additive identity include: The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as or .
Vandermonde matrixIn linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an matrix with entries , the jth power of the number , for all zero-based indices and . Most authors define the Vandermonde matrix as the transpose of the above matrix. The determinant of a square Vandermonde matrix (when ) is called a Vandermonde determinant or Vandermonde polynomial. Its value is: This is non-zero if and only if all are distinct (no two are equal), making the Vandermonde matrix invertible.
Laplace expansionIn linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) submatrices of B. Specifically, for every i, where is the entry of the ith row and jth column of B, and is the determinant of the submatrix obtained by removing the ith row and the jth column of B. The term is called the cofactor of in B.
Scalar (mathematics)A scalar is an element of a field which is used to define a vector space. In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector. Generally speaking, a vector space may be defined by using any field instead of real numbers (such as complex numbers).
Augmented matrixIn linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices, usually for the purpose of performing the same elementary row operations on each of the given matrices. Given the matrices A and B, where the augmented matrix (A|B) is written as This is useful when solving systems of linear equations. For a given number of unknowns, the number of solutions to a system of linear equations depends only on the rank of the matrix representing the system and the rank of the corresponding augmented matrix.
Schur decompositionIn the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily equivalent to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix. The Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A.