Matrice échelonnéeEn algèbre linéaire, une matrice est dite échelonnée en lignes si le nombre de zéros précédant la première valeur non nulle d'une ligne augmente strictement ligne par ligne jusqu'à ce qu'il ne reste éventuellement plus que des zéros. Voici un exemple de matrice échelonnée (les désignent des coefficients quelconques, les des pivots, coefficients non nuls) : Une matrice échelonnée est dite matrice échelonnée réduite, ou matrice canonique en lignes, si les pivots valent 1 et si les autres coefficients dans les colonnes des pivots sont nuls.
Théorème du rangEn mathématiques, et plus précisément en algèbre linéaire, le théorème du rang lie le rang d'une application linéaire et la dimension de son noyau. C'est un corollaire d'un théorème d'isomorphisme. Il peut être interprété par la notion d'indice d'application linéaire. En dimension finie, il permet notamment de caractériser l'inversibilité d'une application linéaire ou d'une matrice par son rang. vignette|Le théorème du rang.
Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.
Matrices semblablesEn mathématiques, deux matrices carrées A et B sont dites semblables s'il existe une matrice inversible P telle que . La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes. Il ne faut pas confondre la notion de matrices semblables avec celle de matrices équivalentes. En revanche, si deux matrices sont semblables, alors elles sont équivalentes.
Zero elementIn mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. An additive identity is the identity element in an additive group. It corresponds to the element 0 such that for all x in the group, 0 + x = x + 0 = x. Some examples of additive identity include: The zero vector under vector addition: the vector of length 0 and whose components are all 0. Often denoted as or .
Matrice de VandermondeEn algèbre linéaire, une matrice de Vandermonde est une matrice avec une progression géométrique dans chaque ligne. Elle tient son nom du mathématicien français Alexandre-Théophile Vandermonde. De façon matricielle, elle se présente ainsi : Autrement dit, pour tous i et j, le coefficient en ligne i et colonne j est Remarque. Certains auteurs utilisent la transposée de la matrice ci-dessus. On considère une matrice V de Vandermonde carrée (). Elle est inversible si et seulement si les sont deux à deux distincts.
Laplace expansionIn linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) submatrices of B. Specifically, for every i, where is the entry of the ith row and jth column of B, and is the determinant of the submatrix obtained by removing the ith row and the jth column of B. The term is called the cofactor of in B.
Scalaire (mathématiques)En algèbre linéaire, les nombres réels qui multiplient les vecteurs dans un espace vectoriel sont appelés des scalaires. Cette multiplication par un scalaire, qui permet de multiplier un vecteur par un nombre pour produire un vecteur, correspond à la loi externe de l'espace vectoriel. Plus généralement, dans un K-espace vectoriel, les scalaires sont les éléments de K, où K peut être l'ensemble des nombres complexes ou n'importe quel autre corps.
Augmented matrixIn linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices, usually for the purpose of performing the same elementary row operations on each of the given matrices. Given the matrices A and B, where the augmented matrix (A|B) is written as This is useful when solving systems of linear equations. For a given number of unknowns, the number of solutions to a system of linear equations depends only on the rank of the matrix representing the system and the rank of the corresponding augmented matrix.
Décomposition de SchurEn algèbre linéaire, une décomposition de Schur (nommée après le mathématicien Issai Schur) d'une matrice carrée complexe M est une décomposition de la formeoù U est une matrice unitaire (U*U = I) et A une matrice triangulaire supérieure. On peut écrire la décomposition de Schur en termes d'applications linéaires : Dans le cas où est l'application nulle, l'énoncé est directement vérifié, on peut donc se contenter de traiter le cas où est différente de l'application nulle.