In mathematics, function application is the act of applying a function to an argument from its domain so as to obtain the corresponding value from its range. In this sense, function application can be thought of as the opposite of function abstraction. Function application is usually depicted by juxtaposing the variable representing the function with its argument encompassed in parentheses. For example, the following expression represents the application of the function ƒ to its argument x. In some instances, a different notation is used where the parentheses aren't required, and function application can be expressed just by juxtaposition. For example, the following expression can be considered the same as the previous one: The latter notation is especially useful in combination with the currying isomorphism. Given a function , its application is represented as by the former notation and (or with the argument written with the less common angle brackets) by the latter. However, functions in curried form can be represented by juxtaposing their arguments: , rather than . This relies on function application being left-associative. Apply Function application can be trivially defined as an operator, called apply or , by the following definition: The operator may also be denoted by a backtick (`). If the operator is understood to be of low precedence and right-associative, the application operator can be used to cut down on the number of parentheses needed in an expression. For example; can be rewritten as: However, this is perhaps more clearly expressed by using function composition instead: or even: if one considers to be a constant function returning . Function application in the lambda calculus is expressed by β-reduction. The Curry–Howard correspondence relates function application to the logical rule of modus ponens.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.