In mathematics, function application is the act of applying a function to an argument from its domain so as to obtain the corresponding value from its range. In this sense, function application can be thought of as the opposite of function abstraction. Function application is usually depicted by juxtaposing the variable representing the function with its argument encompassed in parentheses. For example, the following expression represents the application of the function ƒ to its argument x. In some instances, a different notation is used where the parentheses aren't required, and function application can be expressed just by juxtaposition. For example, the following expression can be considered the same as the previous one: The latter notation is especially useful in combination with the currying isomorphism. Given a function , its application is represented as by the former notation and (or with the argument written with the less common angle brackets) by the latter. However, functions in curried form can be represented by juxtaposing their arguments: , rather than . This relies on function application being left-associative. Apply Function application can be trivially defined as an operator, called apply or , by the following definition: The operator may also be denoted by a backtick (`). If the operator is understood to be of low precedence and right-associative, the application operator can be used to cut down on the number of parentheses needed in an expression. For example; can be rewritten as: However, this is perhaps more clearly expressed by using function composition instead: or even: if one considers to be a constant function returning . Function application in the lambda calculus is expressed by β-reduction. The Curry–Howard correspondence relates function application to the logical rule of modus ponens.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.