Summary
A super grid or supergrid is a wide-area transmission network, generally trans-continental or multinational, that is intended to make possible the trade of high volumes of electricity across great distances. It is sometimes also referred to as a "mega grid". Super grids typically are proposed to use high-voltage direct current (HVDC) to transmit electricity long distances. The latest generation of HVDC power lines can transmit energy with losses of only 1.6% per 1,000 km. Super grids could support a global energy transition by smoothing local fluctuations of wind energy and solar energy. In this context they are considered as a key technology to mitigate global warming. The idea of creating long-distance transmission lines in order to take advantage of renewable sources distantly located is not new. In the US in the 1950s, a proposal was made to ship hydroelectric power from dams being constructed in the Pacific Northwest to consumers in Southern California, but it was opposed and scrapped. In 1961, U.S. president John F. Kennedy authorized a large public works project using new high-voltage, direct current technology from Sweden. The project was undertaken as a close collaboration between General Electric of the U.S. and ASEA of Sweden, and the system was commissioned in 1970. With several upgrades of the converter stations in the intervening decades, the system now has a capacity of 3,100 MW and is known as the Pacific DC Intertie. The concept of a "super grid" dates back to the 1960s and was used to describe the emerging unification of the Great Britain grid. In the code that governs the British Grid, the Grid Code, the Supergrid is currently defined – and has been since this code was first written, in 1990 – as referring to those parts of the British electricity transmission system that are connected at voltages in excess of 200 kV (200,000 volts). British power system planners and operational staff therefore invariably speak of the Supergrid in this context; in practice the definition used captures all of the equipment owned by the National Grid company in England and Wales, and no other equipment.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
EE-472: Smart grids technologies
Learn the technologies and methodologies used in the context of the operation of future power grids and be able to deploy/implement/test them.
ENG-636: NRG2019: Energy Systems: managing the transition to renewables
This Summer School will try to bring to together these very disparate topics including energy policy, modeling and technologies in one coherent single event and give the participants a unique perspect
MGT-555: Innovation & entrepreneurship in engineering
This course is a joint initiative between the School of Engineering and the College of Management to encourage and promote entrepreneurship and management skills, engineering design, hands-on experien
Show more
Related lectures (71)
Operation of Distributed Energy Storage Systems
By the instructor Mario Paolone explores the challenges and solutions of integrating distributed energy storage systems into power grids.
Renewables Integration: Future Grid Operation
Discusses the Energy Strategy 2050 and the integration of renewables into the energy grid.
Heat Reserves Project Video
Explores the Heat Reserves Project, utilizing thermal resources for efficient grid operation.
Show more
Related publications (229)
Related concepts (16)
Wide area synchronous grid
A wide area synchronous grid (also called an "interconnection" in North America) is a three-phase electric power grid that has regional scale or greater that operates at a synchronized utility frequency and is electrically tied together during normal system conditions. Also known as synchronous zones, the most powerful is the Northern Chinese State Grid with 1,700 gigawatts (GW) of generation capacity, while the widest region served is that of the IPS/UPS system serving most countries of the former Soviet Union.
Transmission system operator
File:Electricity grid simple- North America.svg|thumb|380px|right|Simplified diagram of AC electricity grid from generation stations to consumers in North America rect 2 243 235 438 [[Power station]] rect 276 317 412 556 [[Transformer]] rect 412 121 781 400 [[Electric power transmission]] rect 800 0 980 165 [[Transformer]] desc bottom-left A transmission system operator (TSO) is an entity entrusted with transporting energy in the form of natural gas or electrical power on a national or regional level, using fixed infrastructure.
Energy transition
An energy transition (or energy system transformation) is a significant structural change in an energy system regarding supply and consumption. Currently, a transition to sustainable energy (mostly renewable energy) is underway to limit climate change. It is also called renewable energy transition. The current transition is driven by a recognition that global greenhouse-gas emissions must be drastically reduced. This process involves phasing-down fossil fuels and re-developing whole systems to operate on low carbon electricity.
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Introduction to Programming in C++
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan