In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
More generally, the definitions of sine and cosine can be extended to any real value in terms of the lengths of certain line segments in a unit circle. More modern definitions express the sine and cosine as infinite series, or as the solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.
The sine and cosine functions are commonly used to model periodic phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations throughout the year. They can be traced to the and functions used in Indian astronomy during the Gupta period.
Trigonometric functions#Notation
Sine and cosine are written using functional notation with the abbreviations sin and cos.
Often, if the argument is simple enough, the function value will be written without parentheses, as sin θ rather than as sin(θ).
Each of sine and cosine is a function of an angle, which is usually expressed in terms of radians or degrees. Except where explicitly stated otherwise, this article assumes that the angle is measured in radians.
To define the sine and cosine of an acute angle α, start with a right triangle that contains an angle of measure α; in the accompanying figure, angle α in triangle ABC is the angle of interest. The three sides of the triangle are named as follows:
The opposite side is the side opposite to the angle of interest, in this case side a.
The hypotenuse is the side opposite the right angle, in this case side h.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is As usual, means . Any similar triangles have the property that if we select the same angle in all of them, the ratio of the two sides defining the angle is the same regardless of which similar triangle is selected, regardless of its actual size: the ratios depend upon the three angles, not the lengths of the sides.
Trigonometry () is a branch of mathematics concerned with relationships between angles and ratios of lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation.
In mathematics, the lemniscate constant π is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of pi for the circle. Equivalently, the perimeter of the lemniscate is 2π. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol π is a cursive variant of π; see Pi § Variant pi. Gauss's constant, denoted by G, is equal to π /pi ≈ 0.8346268.
Explores the wave equation for a vibrating string and its numerical solution using finite difference formulas and the Newmark scheme in MATLAB/GNU Octave.
In this article we study imaginary Gaussian multiplicative chaos-namely a family of random generalized functions which can formally be written as e(iX(x)), where X is a log-correlated real-valued Gaussian field on R-d, that is, it has a logarithmic singula ...
We construct a measure on the thick points of a Brownian loop soup in a bounded domain DD of the plane with given intensity theta>0θ>0, which is formally obtained by exponentiating the square root of its occupation field. The measure is construct ...
We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent ...