Concept

Diamond graph

In the mathematical field of graph theory, the diamond graph is a planar, undirected graph with 4 vertices and 5 edges. It consists of a complete graph K_4 minus one edge. The diamond graph has radius 1, diameter 2, girth 3, chromatic number 3 and chromatic index 3. It is also a 2-vertex-connected and a 2-edge-connected, graceful, Hamiltonian graph. A graph is diamond-free if it has no diamond as an induced subgraph. The triangle-free graphs are diamond-free graphs, since every diamond contains a triangle. The diamond-free graphs are locally clustered: that is, they are the graphs in which every neighborhood is a cluster graph. Alternatively, a graph is diamond-free if and only if every pair of maximal cliques in the graph shares at most one vertex. The family of graphs in which each connected component is a cactus graph is downwardly closed under graph minor operations. This graph family may be characterized by a single forbidden minor. This minor is the diamond graph. If both the butterfly graph and the diamond graph are forbidden minors, the family of graphs obtained is the family of pseudoforests. The full automorphism group of the diamond graph is a group of order 4 isomorphic to the Klein four-group, the direct product of the cyclic group \mathbb{Z} / 2\mathbb{Z} with itself. The characteristic polynomial of the diamond graph is x(x+1)(x^2-x-4). It is the only graph with this characteristic polynomial, making it a graph determined by its spectrum.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Interactions in Systems: Ising Model
Explores the Ising model, chemical potentials, repulsion forces, and hydrogen bonding in systems.
Show more
Related publications (10)

Random walks and forbidden minors III: poly(d epsilon(-1))-time partition oracles for minor-free graph classes

Akash Kumar

Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
IEEE COMPUTER SOC2022

On approximation algorithms and polyhedral relaxations for knapsack problems, and clustered planarity testing

Igor Malinovic

Knapsack problems give a simple framework for decision making. A classical example is the min-knapsack problem (MinKnap): choose a subset of items with minimum total cost, whose total profit is above a given threshold. While this model successfully general ...
EPFL2019

Clustered planarity testing revisited

Radoslav Fulek, Jan Kyncl, Igor Malinovic

The Hanani--Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generali ...
2015
Show more
Related concepts (7)
Cactus graph
In graph theory, a cactus (sometimes called a cactus tree) is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or (for nontrivial cactus) in which every block (maximal subgraph without a cut-vertex) is an edge or a cycle. Cacti are outerplanar graphs. Every pseudotree is a cactus. A nontrivial graph is a cactus if and only if every block is either a simple cycle or a single edge.
Forbidden graph characterization
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Pseudoforest
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. That is, it is a system of vertices and edges connecting pairs of vertices, such that no two cycles of consecutive edges share any vertex with each other, nor can any two cycles be connected to each other by a path of consecutive edges. A pseudotree is a connected pseudoforest. The names are justified by analogy to the more commonly studied trees and forests.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.