Japanese numeralsThe Japanese numerals are the number names used in Japanese. In writing, they are the same as the Chinese numerals, and large numbers follow the Chinese style of grouping by 10,000. Two pronunciations are used: the Sino-Japanese (on'yomi) readings of the Chinese characters and the Japanese yamato kotoba (native words, kun'yomi readings). There are two ways of writing the numbers in Japanese: in Arabic numerals (1, 2, 3) or in Chinese numerals (一, 二, 三).
32 (number)32 (thirty-two) is the natural number following 31 and preceding 33. 32 is the fifth power of two (), making it the first non-unitary fifth-power of the form p5 where p is prime. 32 is the totient summatory function over the first 10 integers, and the smallest number with exactly 7 solutions for . The aliquot sum of a power of two () is always one less than the number itself, therefore the aliquot sum of 32 is 31. The product between neighbor numbers of 23, the dual permutation of the digits of 32 in decimal, is equal to the sum of the first 32 integers: .
1010 (ten) is the even natural number following 9 and preceding 11. It is the first double-digit number. Ten is the base of the decimal numeral system, the most common system of denoting numbers in both spoken and written language. A collection of ten items (most often ten years) is called a decade. The ordinal adjective is decimal; the distributive adjective is denary. Increasing a quantity by one order of magnitude is most widely understood to mean multiplying the quantity by ten. To reduce something by one tenth is to decimate.
Harshad numberIn mathematics, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base n are also known as n-harshad (or n-Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit (joy) + (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977.
Pierpont primeIn number theory, a Pierpont prime is a prime number of the form for some nonnegative integers u and v. That is, they are the prime numbers p for which p − 1 is 3-smooth. They are named after the mathematician James Pierpont, who used them to characterize the regular polygons that can be constructed using conic sections. The same characterization applies to polygons that can be constructed using ruler, compass, and angle trisector, or using paper folding. Except for 2 and the Fermat primes, every Pierpont prime must be 1 modulo 6.
Chinese numerologySome numbers are believed by some to be auspicious or lucky (吉利, ) or inauspicious or unlucky (不吉, ) based on the Chinese word that the number sounds similar to. The numbers 2, 3, 6, and 8 are generally considered to be lucky, while 4 is considered unlucky. These traditions are not unique to Chinese culture, with other countries with a history of Han characters also having similar beliefs stemming from these concepts. The number 0 (零, ) is the beginning of all things and is generally considered a good number, because it sounds like 良 (pinyin: liáng), which means 'good'.
23 (number)23 (twenty-three) is the natural number following 22 and preceding 24. Twenty-three is the ninth prime number, the smallest odd prime that is not a twin prime. It is, however, a cousin prime with 19, and a sexy prime with 17 and 29; while also being the largest member of the first prime sextuplet (7, 11, 13, 17, 19, 23). Twenty-three is also the fifth factorial prime, the second Woodall prime, and a happy number in decimal.
Mersenne primeIn mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p. The exponents n which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, .
1000 (number)1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000. A group of one thousand things is sometimes known, from Ancient Greek, as a chiliad. A period of one thousand years may be known as a chiliad or, more often from Latin, as a millennium. The number 1000 is also sometimes described as a short thousand in medieval contexts where it is necessary to distinguish the Germanic concept of 1200 as a long thousand.