Numération japonaiseLa numération japonaise est calquée sur le modèle chinois. Les sinogrammes sont d'ailleurs restés identiques dans l'écriture kanji. Le tableau ci-dessous présente les différentes façons d'écrire les nombres en japonais. Pour le chiffre 4, « し » (shi) est moins utilisé parce qu'il se prononce de la même façon que « la mort » (死). Une fois que l'on connaît ce tableau, il suffit de mettre les kanjis côte à côte pour construire les nombres. Une différence réside néanmoins dans le fait que l'on regroupe les chiffres par quatre et non par trois.
32 (nombre)Le nombre 32 (trente-deux) est l'entier naturel qui suit 31 et qui précède 33. Le nombre 32 est : un nombre pratique ; le plus petit nombre n pour lequel l'équation φ(x) = n possède exactement 7 solutions ; la puissance cinquième de 2 (2 = 32) ; un nombre composé deux fois brésilien car 32 = 447 = 2215 ; la somme des trois premiers entiers non nuls élevés à leur propre puissance (1 + 2 + 3 = 32).
10 (nombre)Le nombre dix, noté 10 dans le système décimal, est l'entier naturel qui suit neuf et qui précède onze. Dix est le nombre de doigts de mains qu'un être humain possède généralement. Ce nombre occupe une place importante dans le calcul numérique traditionnel et la vie quotidienne car il a été choisi comme base pour le système de numération écrite. Ainsi s'écrit-il, dans le système décimal, 10, c’est-à-dire 1(un)0(zéro), ce qui signifie qu'il est composé dune dizaine et de zéro unité.
Nombre harshadEn mathématiques récréatives, un nombre harshad, ou nombre de Niven, est un entier naturel qui est divisible par la somme de ses chiffres dans une base donnée. En base b, tous les nombres de 0 à b et toutes les puissances de b sont des nombres harshad, mais ils suivent ensuite une répartition similaire à celle des nombres premiers. Ils semblerait que ces nombres aient été considérés pour la première fois par le mathématicien indien D. R. Kaprekar dans un texte de 1955 sous le nom de "multidigital numbers" .
Nombre premier de PierpontEn arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
Numérologie chinoisethumbnail|Le chiffre 4 est de mauvais augure, car en chinois, c'est un quasi-homophone de « mort » (死, sǐ). De ce fait, il ne figure pas les étages 4 ni 14 dans la numérotation des étages de certains immeubles chinois. Ici, l'étage 13 est également absent, puisque ce nombre est lui aussi symbole de mort. Dans la culture chinoise, certains nombres sont perçus comme fastes (jili 吉利) ou néfastes (buli 不利) selon le sens du mot chinois avec lequel le nombre est particulièrement proche phonétiquement.
23 (nombre)Le nombre 23 (vingt-trois) est l'entier naturel qui suit 22 et qui précède 24. Le nombre 23 est : le neuvième nombre premier (cousin avec 19 et sexy avec 17 et avec 29) ; un nombre premier factoriel ; le septième nombre premier non brésilien ; un nombre premier de Sophie Germain ; un nombre premier sûr ; un nombre premier supersingulier un nombre de Woodall ; un nombre de Smarandache-Wellin ; un nombre premier long ; un nombre premier de Pillai ; le plus petit entier n > 0 tel que Z[e] ne soit pas principal ; le seul entier naturel avec 239 à ne pas être somme de 8 cubes (voir problème de Waring); le nombre de personnes que l'on doit réunir pour avoir au moins une chance sur deux que deux personnes de ce groupe aient leur anniversaire le même jour (voir le Paradoxe des anniversaires) ; un nombre de Wedderburn-Etherington ; la somme des produits des quatre premiers entiers par leur factorielle .
Nombre de Mersenne premiervignette|droite|Le moine français Marin Mersenne (1588-1648) En mathématiques et plus précisément en arithmétique, un nombre de Mersenne est un nombre de la forme 2 − 1 (souvent noté ), où est un entier naturel non nul ; un nombre de Mersenne premier (ou nombre premier de Mersenne) est donc un nombre premier de cette forme. Ces nombres doivent leur nom au religieux érudit et mathématicien français du Marin Mersenne ; mais, près de auparavant, Euclide les utilisait déjà pour étudier les nombres parfaits.
1 000 (nombre)Le nombre mille est l'entier naturel qui suit neuf cent quatre-vingt dix-neuf (ou neuf cent nonante-neuf) et qui précède mille un. Sa représentation décimale est . Mille milliers est égal à un million (106). Dans le Système international d'unités, mille est noté par le préfixe k (kilo). En notation scientifique, il s'écrit 1 × 10. Le cube du nombre 10. Son inverse, 1/1000, se nomme millième. Mille et ses puissances (un million, un milliard, un billion, un billiard, etc.