Concept

Fibred category

Summary
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull-backs) of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories (over a site) with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories. Fibred categories were introduced by , and developed in more detail by . There are many examples in topology and geometry where some types of objects are considered to exist on or above or over some underlying base space. The classical examples include vector bundles, principal bundles, and sheaves over topological spaces. Another example is given by "families" of algebraic varieties parametrised by another variety. Typical to these situations is that to a suitable type of a map between base spaces, there is a corresponding inverse image (also called pull-back) operation taking the considered objects defined on to the same type of objects on . This is indeed the case in the examples above: for example, the inverse image of a vector bundle on is a vector bundle on . Moreover, it is often the case that the considered "objects on a base space" form a category, or in other words have maps (morphisms) between them. In such cases the inverse image operation is often compatible with composition of these maps between objects, or in more technical terms is a functor.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.