Concept

Relationships among probability distributions

Résumé
In probability theory and statistics, there are several relationships among probability distributions. These relations can be categorized in the following groups: One distribution is a special case of another with a broader parameter space Transforms (function of a random variable); Combinations (function of several variables); Approximation (limit) relationships; Compound relationships (useful for Bayesian inference); Duality; Conjugate priors. A binomial distribution with parameters n = 1 and p is a Bernoulli distribution with parameter p. A negative binomial distribution with parameters n = 1 and p is a geometric distribution with parameter p. A gamma distribution with shape parameter α = 1 and rate parameter β is an exponential distribution with rate parameter β. A gamma distribution with shape parameter α = v/2 and rate parameter β = 1/2 is a chi-squared distribution with ν degrees of freedom. A chi-squared distribution with 2 degrees of freedom (k = 2) is an exponential distribution with a mean value of 2 (rate λ = 1/2 .) A Weibull distribution with shape parameter k = 1 and rate parameter β is an exponential distribution with rate parameter β. A beta distribution with shape parameters α = β = 1 is a continuous uniform distribution over the real numbers 0 to 1. A beta-binomial distribution with parameter n and shape parameters α = β = 1 is a discrete uniform distribution over the integers 0 to n. A Student's t-distribution with one degree of freedom (v = 1) is a Cauchy distribution with location parameter x = 0 and scale parameter γ = 1. A Burr distribution with parameters c = 1 and k (and scale λ) is a Lomax distribution with shape k (and scale λ.) Multiplying the variable by any positive real constant yields a scaling of the original distribution. Some are self-replicating, meaning that the scaling yields the same family of distributions, albeit with a different parameter: normal distribution, gamma distribution, Cauchy distribution, exponential distribution, Erlang distribution, Weibull distribution, logistic distribution, error distribution, power-law distribution, Rayleigh distribution.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
COM-417: Advanced probability and applications
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
MATH-231: Probability and statistics I
Introduction to notions of probability and basic statistics.
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Afficher plus
Séances de cours associées (32)
Principe des grandes déviations : le théorème de Cramer
Couvre le théorème de Cramer et l'inégalité de Hoeffding dans le contexte du principe des grandes déviations.
Régression linéaire : absence ou présence de covariables
Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.
Réseaux sociaux et d'information 2: Evolution
Plonge dans la dynamique des réseaux sociaux et d'information, y compris le comportement de troupeau, les cascades d'informations, l'attachement préférentiel et le paradoxe de l'amitié.
Afficher plus
Publications associées (33)

Information Spectrum Converse for Minimum Entropy Couplings and Functional Representations

Given two jointly distributed random variables (X,Y), a functional representation of X is a random variable Z independent of Y, and a deterministic function g(⋅,⋅) such that X=g(Y,Z). The problem of finding a minimum entropy functional representation is kn ...
2023

Functional peaks-over-threshold analysis

Anthony Christopher Davison, Raphaël Gérard Théodore Michel Marie de Deloÿe et Fourcade de Fondeville

Peaks-over-threshold analysis using the generalised Pareto distribution is widely applied in modelling tails of univariate random variables, but much information may be lost when complex extreme events are studied using univariate results. In this paper, w ...
WILEY2022

When walking peters out: investigating distance-decay and time-decay for daily walking

Vincent Kaufmann, Emmanuel Pierre Jean Ravalet, Derek Pierre Christie, Dominic Villeneuve, Fernando Anisio De Oliveira Simas

In Switzerland, walking accounts for 30% of trips and 44% of single-mode episodes. This is higher than in many countries but does not account for walking distances or durations, which tend to be short according to evidence from North America. This contribu ...
2018
Afficher plus
Concepts associés (5)
Compound probability distribution
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Ratio distribution
A ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Loi de Poisson
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Afficher plus
MOOCs associés (2)
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t