In the fields of forecasting and prediction, forecasting skill or prediction skill is any measure of the accuracy and/or degree of association of prediction to an observation or estimate of the actual value of what is being predicted (formally, the predictand); it may be quantified as a skill score. In meteorology, more specifically in weather forecasting, skill measures the superiority of a forecast over a simple historical baseline of past observations. The same forecast methodology can result in different skill scores at different places, or even in the same place for different seasons (e.g., spring weather might be driven by erratic local conditions, whereas winter cold snaps might correlate with observable polar winds). Weather forecast skill is often presented in the form of seasonal geographical maps. Forecasting skill for single-value forecasts (i.e., time series of a scalar quantity) is commonly represented in terms of metrics such as correlation, root mean squared error, mean absolute error, relative mean absolute error, bias, and the Brier score, among others. A number of scores associated with the concept of entropy in information theory are also being used. The term 'forecast skill' may also be used qualitatively, in which case it could either refer to forecast performance according to a single metric or to the overall forecast performance based on multiple metrics. Probabilistic forecast skill scores may use metrics such as the Ranked Probabilistic Skill Score (RPSS) or the Continuous RPSS (CRPSS), among others. Categorical skill metrics such as the False Alarm Ratio (FAR), the Probability of Detection (POD), the Critical Success Index (CSI), and Equitable Threat Score (ETS) are also relevant for some forecasting applications. Skill is often, but not exclusively, expressed as the relative representation that compares the performance of a particular forecast prediction to that of a reference, benchmark prediction—a formulation called a 'Skill Score'.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (6)
Understanding Interest Rates: Term Structure and Yield Curve
Explores interest rates, term structure, and yield curve, illustrating their relation and impact on economic forecasts.
Operation of Distributed Energy Storage Systems
By the instructor Mario Paolone explores the challenges and solutions of integrating distributed energy storage systems into power grids.
Interest Rates: Term Structure and Valuing Bonds
Explores interest rates, term structures, bond valuation, and credit risk impact on bond prices.
Show more
Related publications (21)
Related concepts (3)
Ensemble forecasting
Ensemble forecasting is a method used in or within numerical weather prediction. Instead of making a single forecast of the most likely weather, a set (or ensemble) of forecasts is produced. This set of forecasts aims to give an indication of the range of possible future states of the atmosphere. Ensemble forecasting is a form of Monte Carlo analysis.
Weather forecasting
Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th century. Weather forecasts are made by collecting quantitative data about the current state of the atmosphere, land, and ocean and using meteorology to project how the atmosphere will change at a given place.
Meteorology
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.