HeteroatomIn chemistry, a heteroatom () is, strictly, any atom that is not carbon or hydrogen. In practice, the term is usually used more specifically to indicate that non-carbon atoms have replaced carbon in the backbone of the molecular structure. Typical heteroatoms are nitrogen (N), oxygen (O), sulfur (S), phosphorus (P), chlorine (Cl), bromine (Br), and iodine (I), as well as the metals lithium (Li) and magnesium (Mg). It can also be used with highly specific meanings in specialised contexts.
Nitrogen oxideNitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds: Nitric oxide (NO), nitrogen(II) oxide, or nitrogen monoxide Nitrogen dioxide (), nitrogen(IV) oxide Nitrogen trioxide (), or nitrate radical Nitrous oxide (), nitrogen(0,II) oxide Dinitrogen dioxide (), nitrogen(II) oxide dimer Dinitrogen trioxide (), nitrogen(II,IV) oxide Dinitrogen tetroxide (), nitrogen(IV) oxide dimer Dinitrogen pentoxide (), nitrogen(V) oxide, or nitronium nitrate Nitrosyl azide (), nit
NitrideIn chemistry, a nitride is an inorganic compound of nitrogen. The "nitride" anion, N3- ion, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitrides have a found applications, such as wear-resistant coatings (e.g., titanium nitride, TiN), hard ceramic materials (e.g., silicon nitride, Si3N4), and semiconductors (e.g., gallium nitride, GaN). The development of GaN-based light emitting diodes was recognized by the 2014 Nobel Prize in Physics.
AzideIn chemistry, azide is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant application of azides is as a propellant in air bags. Sodium azide is made industrially by the reaction of nitrous oxide, with sodium amide in liquid ammonia as solvent: Many inorganic azides can be prepared directly or indirectly from sodium azide.
IsocyanideAn isocyanide (also called isonitrile or carbylamine) is an organic compound with the functional group –. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds. The C-N distance in isocyanides is 115.8 pm in methyl isocyanide. The C-N-C angles are near 180°.