In chemistry, a nitride is an inorganic compound of nitrogen. The "nitride" anion, N3- ion, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitrides have a found applications, such as wear-resistant coatings (e.g., titanium nitride, TiN), hard ceramic materials (e.g., silicon nitride, Si3N4), and semiconductors (e.g., gallium nitride, GaN). The development of GaN-based light emitting diodes was recognized by the 2014 Nobel Prize in Physics. Metal nitrido complexes are also common.
Synthesis of inorganic metal nitrides is challenging because nitrogen gas (N2) is not very reactive at low temperatures, but it becomes more reactive at higher temperatures. Therefore, a balance must be achieved between the low reactivity of nitrogen gas at low temperatures and the entropy driven formation of N2 at high temperatures. However, synthetic methods for nitrides are growing more sophisticated and the materials are of increasing technological relevance.
Like carbides, nitrides are often refractory materials owing to their high lattice energy, which reflects the strong bonding of "N3−" to with metal cation(s). Thus, cubic boron nitride, titanium nitride, and silicon nitride are used as cutting materials and hard coatings. Hexagonal boron nitride, which adopts a layered structure, is a useful high-temperature lubricant akin to molybdenum disulfide. Nitride compounds often have large band gaps, thus nitrides are usually insulators or wide-bandgap semiconductors; examples include boron nitride and silicon nitride. The wide-band gap material gallium nitride is prized for emitting blue light in LEDs. Like some oxides, nitrides can absorb hydrogen and have been discussed in the context of hydrogen storage, e.g. lithium nitride.
Classification of such a varied group of compounds is somewhat arbitrary. Compounds where nitrogen is not assigned −3 oxidation state are not included, such as nitrogen trichloride where the oxidation state is +3; nor are ammonia and its many organic derivatives.