Concept

Long line (topology)

Summary
In topology, the long line (or Alexandroff line) is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties (e.g., it is neither Lindelöf nor separable). Therefore, it serves as an important counterexample in topology. Intuitively, the usual real-number line consists of a countable number of line segments laid end-to-end, whereas the long line is constructed from an uncountable number of such segments. The closed long ray is defined as the Cartesian product of the first uncountable ordinal with the half-open interval equipped with the order topology that arises from the lexicographical order on . The open long ray is obtained from the closed long ray by removing the smallest element The long line is obtained by "gluing" together two long rays, one in the positive direction and the other in the negative direction. More rigorously, it can be defined as the order topology on the disjoint union of the reversed open long ray (“reversed” means the order is reversed) (this is the negative half) and the (not reversed) closed long ray (the positive half), totally ordered by letting the points of the latter be greater than the points of the former. Alternatively, take two copies of the open long ray and identify the open interval of the one with the same interval of the other but reversing the interval, that is, identify the point (where is a real number such that ) of the one with the point of the other, and define the long line to be the topological space obtained by gluing the two open long rays along the open interval identified between the two. (The former construction is better in the sense that it defines the order on the long line and shows that the topology is the order topology; the latter is better in the sense that it uses gluing along an open set, which is clearer from the topological point of view.) Intuitively, the closed long ray is like a real (closed) half-line, except that it is much longer in one direction: we say that it is long at one end and closed at the other.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.