Turing completenessIn computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine (devised by English mathematician and computer scientist Alan Turing). This means that this system is able to recognize or decide other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set.
Tag systemIn the theory of computation, a tag system is a deterministic model of computation published by Emil Leon Post in 1943 as a simple form of a Post canonical system. A tag system may also be viewed as an abstract machine, called a Post tag machine (not to be confused with Post–Turing machines)—briefly, a finite-state machine whose only tape is a FIFO queue of unbounded length, such that in each transition the machine reads the symbol at the head of the queue, deletes a constant number of symbols from the head, and appends to the tail a symbol-string that depends solely on the first symbol read in this transition.
Computer scientistA computer scientist is a scholar who specializes in the academic study of computer science. Computer scientists typically work on the theoretical side of computation, as opposed to the hardware side on which computer engineers mainly focus (although there is overlap). Although computer scientists can also focus their work and research on specific areas (such as algorithm and data structure development and design, software engineering, information theory, database theory, computational complexity theory, numerical analysis, programming language theory, computer graphics, and computer vision), their foundation is the theoretical study of computing from which these other fields derive.
Computably enumerable setIn computability theory, a set S of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: There is an algorithm such that the set of input numbers for which the algorithm halts is exactly S. Or, equivalently, There is an algorithm that enumerates the members of S. That means that its output is simply a list of all the members of S: s1, s2, s3, ... . If S is infinite, this algorithm will run forever.
Computable setIn computability theory, a set of natural numbers is called computable, recursive, or decidable if there is an algorithm which takes a number as input, terminates after a finite amount of time (possibly depending on the given number) and correctly decides whether the number belongs to the set or not. A set which is not computable is called noncomputable or undecidable. A more general class of sets than the computable ones consists of the computably enumerable (c.e.) sets, also called semidecidable sets.
BlooP and FlooPand () (Bounded loop and Free loop) are simple programming languages designed by Douglas Hofstadter to illustrate a point in his book Gödel, Escher, Bach. BlooP is a non-Turing-complete programming language whose main control flow structure is a bounded loop (i.e. recursion is not permitted). All programs in the language must terminate, and this language can only express primitive recursive functions. FlooP is identical to BlooP except that it supports unbounded loops; it is a Turing-complete language and can express all computable functions.
Register machineIn mathematical logic and theoretical computer science, a register machine is a generic class of abstract machines used in a manner similar to a Turing machine. All the models are Turing equivalent. The register machine gets its name from its use of one or more "registers". In contrast to the tape and head used by a Turing machine, the model uses multiple, uniquely addressed registers, each of which holds a single positive integer.
Chaitin's constantIn the computer science subfield of algorithmic information theory, a Chaitin constant (Chaitin omega number) or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin. Although there are infinitely many halting probabilities, one for each method of encoding programs, it is common to use the letter Ω to refer to them as if there were only one.
Busy beaverIn theoretical computer science, the busy beaver game aims at finding a terminating program of a given size that produces the most output possible. Since an endlessly looping program producing infinite output is easily conceived, such programs are excluded from the game. More precisely, the busy beaver game consists of designing a halting Turing machine with alphabet {0,1} which writes the most 1s on the tape, using only a given set of states.
Universal Turing machineIn computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible. He suggested that we may compare a man in the process of computing a real number to a machine which is only capable of a finite number of conditions q 1: q 2 . ....