Concept

Quasi-finite morphism

In algebraic geometry, a branch of mathematics, a morphism f : X → Y of schemes is quasi-finite if it is of finite type and satisfies any of the following equivalent conditions: Every point x of X is isolated in its fiber f−1(f(x)). In other words, every fiber is a discrete (hence finite) set. For every point x of X, the scheme f−1(f(x)) = X ×YSpec κ(f(x)) is a finite κ(f(x)) scheme. (Here κ(p) is the residue field at a point p.) For every point x of X, is finitely generated over . Quasi-finite morphisms were originally defined by Alexander Grothendieck in SGA 1 and did not include the finite type hypothesis. This hypothesis was added to the definition in EGA II 6.2 because it makes it possible to give an algebraic characterization of quasi-finiteness in terms of stalks. For a general morphism f : X → Y and a point x in X, f is said to be quasi-finite at x if there exist open affine neighborhoods U of x and V of f(x) such that f(U) is contained in V and such that the restriction f : U → V is quasi-finite. f is locally quasi-finite if it is quasi-finite at every point in X. A quasi-compact locally quasi-finite morphism is quasi-finite. For a morphism f, the following properties are true. If f is quasi-finite, then the induced map fred between reduced schemes is quasi-finite. If f is a closed immersion, then f is quasi-finite. If X is noetherian and f is an immersion, then f is quasi-finite. If g : Y → Z, and if g ∘ f is quasi-finite, then f is quasi-finite if any of the following are true: g is separated, X is noetherian, X ×Z Y is locally noetherian. Quasi-finiteness is preserved by base change. The composite and fiber product of quasi-finite morphisms is quasi-finite. If f is unramified at a point x, then f is quasi-finite at x. Conversely, if f is quasi-finite at x, and if also , the local ring of x in the fiber f−1(f(x)), is a field and a finite separable extension of κ(f(x)), then f is unramified at x. Finite morphisms are quasi-finite. A quasi-finite proper morphism locally of finite presentation is finite.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.