In molecular biology, protein catabolism is the breakdown of proteins into smaller peptides and ultimately into amino acids. Protein catabolism is a key function of digestion process. Protein catabolism often begins with pepsin, which converts proteins into polypeptides. These polypeptides are then further degraded. In humans, the pancreatic proteases include trypsin, chymotrypsin, and other enzymes. In the intestine, the small peptides are broken down into amino acids that can be absorbed into the bloodstream. These absorbed amino acids can then undergo amino acid catabolism, where they are utilized as an energy source or as precursors to new proteins. The amino acids produced by catabolism may be directly recycled to form new proteins, converted into different amino acids, or can undergo amino acid catabolism to be converted to other compounds via the Krebs cycle. Protein catabolism produces amino acids that are used to form bacterial proteins or oxidized for to meet the energy needs of the cell. Among the several degrading processes for amino acids are Deamination (removal of an amino group), transamination (transfer of amino group), decarboxylation (removal of carboxyl group), and dehydrogenation (removal of hydrogen). The degraded amino acid that they can be processed as fuel for the Krebs/Citric Acid (TCA) Cycle. Protein degradation differs from protein catabolism. Proteins are produced and destroyed routinely as part of the normal operations of the cell. Transcription factors, proteins that help regulate protein synthesis, are targets of such degradations. Their degradation is not a significant contributor to the energy needs of the cell. The addition of ubiquitin (ubiquitylation) marks a protein for degradation via the proteasome. Oxidative deamination is the first step to breaking down the amino acids so that they can be converted to sugars. The process begins by removing the amino group of the amino acids. The amino group becomes ammonium as it is lost and later undergoes the urea cycle to become urea, in the liver.
, ,