Summary
In polymer chemistry, anionic addition polymerization is a form of chain-growth polymerization or addition polymerization that involves the polymerization of monomers initiated with anions. The type of reaction has many manifestations, but traditionally vinyl monomers are used. Often anionic polymerization involves living polymerizations, which allows control of structure and composition. As early as 1936, Karl Ziegler proposed that anionic polymerization of styrene and butadiene by consecutive addition of monomer to an alkyl lithium initiator occurred without chain transfer or termination. Twenty years later, living polymerization was demonstrated by Michael Szwarc and coworkers. In one of the breakthrough events in the field of polymer science, Szwarc elucidated that electron transfer occurred from radical anion sodium naphthalene to styrene. The results in the formation of an organosodium species, which rapidly added styrene to form a "two – ended living polymer." An important aspect of his work, Szwarc employed the aprotic solvent tetrahydrofuran. Being a physical chemist, Szwarc elucidated the kinetics and the thermodynamics of the process in considerable detail. At the same time, he explored the structure property relationship of the various ion pairs and radical ions involved. This work provided the foundations for the synthesis of polymers with improved control over molecular weight, molecular weight distribution, and the architecture. The use of alkali metals to initiate polymerization of 1,3-dienes led to the discovery by Stavely and co-workers at Firestone Tire and Rubber company of cis-1,4-polyisoprene. This sparked the development of commercial anionic polymerization processes that utilize alkyllithium initiators. Roderic Quirk won the 2019 Charles Goodyear Medal in recognition of his contributions to anionic polymerization technology. He was introduced to the subject while working in a Phillips Petroleum lab with Henry Hsieh. Two broad classes of monomers are susceptible to anionic polymerization.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.