LinearizationIn mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology.
Catastrophic cancellationIn numerical analysis, catastrophic cancellation is the phenomenon that subtracting good approximations to two nearby numbers may yield a very bad approximation to the difference of the original numbers. For example, if there are two studs, one long and the other long, and they are measured with a ruler that is good only to the centimeter, then the approximations could come out to be and . These may be good approximations, in relative error, to the true lengths: the approximations are in error by less than 2% of the true lengths, .
Finite volume methodThe finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative.
Generalized minimal residual methodIn mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector. The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986. It is a generalization and improvement of the MINRES method due to Paige and Saunders in 1975.
Bisection methodIn mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs. The method consists of repeatedly bisecting the interval defined by these values and then selecting the subinterval in which the function changes sign, and therefore must contain a root. It is a very simple and robust method, but it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution which is then used as a starting point for more rapidly converging methods.
Residual (numerical analysis)Loosely speaking, a residual is the error in a result. To be precise, suppose we want to find x such that Given an approximation x0 of x, the residual is that is, "what is left of the right hand side" after subtracting f(x0)" (thus, the name "residual": what is left, the rest). On the other hand, the error is If the exact value of x is not known, the residual can be computed, whereas the error cannot. Similar terminology is used dealing with differential, integral and functional equations.
Finite difference methodIn numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time interval (if applicable) are discretized, or broken into a finite number of steps, and the value of the solution at these discrete points is approximated by solving algebraic equations containing finite differences and values from nearby points.
Rate of convergenceIn numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence that converges to is said to have order of convergence and rate of convergence if The rate of convergence is also called the asymptotic error constant. Note that this terminology is not standardized and some authors will use rate where this article uses order (e.g., ).
ErrorAn error (from the Latin error, meaning 'wandering') is an action which is inaccurate or incorrect. In some usages, an error is synonymous with a mistake. The etymology derives from the Latin errare, meaning 'to stray'. In statistics, "error" refers to the difference between the value which has been computed and the correct value. An error could result in failure or in a deviation from the intended performance or behavior. One reference differentiates between "error" and "mistake" as follows: An 'error' is a deviation from accuracy or correctness.
Curse of dimensionalityThe curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience. The expression was coined by Richard E. Bellman when considering problems in dynamic programming. Dimensionally cursed phenomena occur in domains such as numerical analysis, sampling, combinatorics, machine learning, data mining and databases.