Concurrency (computer science)In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.
Atomicity (database systems)In database systems, atomicity (ˌætəˈmɪsəti; from átomos) is one of the ACID (Atomicity, Consistency, Isolation, Durability) transaction properties. An atomic transaction is an indivisible and irreducible series of database operations such that either all occurs, or nothing occurs. A guarantee of atomicity prevents updates to the database occurring only partially, which can cause greater problems than rejecting the whole series outright. As a consequence, the transaction cannot be observed to be in progress by another database client.
Mutual exclusionIn computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory.
Rollback (data management)In database technologies, a rollback is an operation which returns the database to some previous state. Rollbacks are important for database integrity, because they mean that the database can be restored to a clean copy even after erroneous operations are performed. They are crucial for recovering from database server crashes; by rolling back any transaction which was active at the time of the crash, the database is restored to a consistent state.
Clustered file systemA clustered file system is a which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system (only direct attached storage for each node). Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.
Distributed concurrency controlDistributed concurrency control is the concurrency control of a system distributed over a computer network (Bernstein et al. 1987, Weikum and Vossen 2001). In database systems and transaction processing (transaction management) distributed concurrency control refers primarily to the concurrency control of a distributed database. It also refers to the concurrency control in a multidatabase (and other multi-transactional object) environment (e.g., federated database, grid computing, and cloud computing environments.
Replication (computing)Replication in computing involves sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility. Replication in computing can refer to: Data replication, where the same data is stored on multiple storage devices Computation replication, where the same computing task is executed many times.
Read-copy-updateIn computer science, read-copy-update (RCU) is a synchronization mechanism that avoids the use of lock primitives while multiple threads concurrently read and update elements that are linked through pointers and that belong to shared data structures (e.g., linked lists, trees, hash tables). Whenever a thread is inserting or deleting elements of data structures in shared memory, all readers are guaranteed to see and traverse either the older or the new structure, therefore avoiding inconsistencies (e.g.
Two-phase commit protocolIn transaction processing, databases, and computer networking, the two-phase commit protocol (2PC, tupac) is a type of atomic commitment protocol (ACP). It is a distributed algorithm that coordinates all the processes that participate in a distributed atomic transaction on whether to commit or abort (roll back) the transaction. This protocol (a specialised type of consensus protocol) achieves its goal even in many cases of temporary system failure (involving either process, network node, communication, etc.
Precedence graphA precedence graph, also named conflict graph and serializability graph, is used in the context of concurrency control in databases. The precedence graph for a schedule S contains: A node for each committed transaction in S An arc from Ti to Tj if an action of Ti precedes and conflicts with one of Tj's actions. That is the actions belong to different transactions, at least one of the actions is a write operation, and the actions access the same object (read or write). A precedence graph of the schedule D, with 3 transactions.