Concept

Logarithmic differentiation

Summary
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate). It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions. The principle can be implemented, at least in part, in the differentiation of almost all differentiable functions, providing that these functions are non-zero. The method is used because the properties of logarithms provide avenues to quickly simplify complicated functions to be differentiated. These properties can be manipulated after the taking of natural logarithms on both sides and before the preliminary differentiation. The most commonly used logarithm laws are Using Faà di Bruno's formula, the n-th order logarithmic derivative is, Using this, the first four derivatives are, Product rule A natural logarithm is applied to a product of two functions to transform the product into a sum Differentiating by applying the chain and the sum rules yields and, after rearranging, yields which is the product rule for derivatives. Quotient rule A natural logarithm is applied to a quotient of two functions to transform the division into a subtraction Differentiating by applying the chain and the sum rules yields and, after rearranging, yields which is the quotient rule for derivatives.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.