BaryonIn particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified as fermions because they have half-integer spin. The name "baryon", introduced by Abraham Pais, comes from the Greek word for "heavy" (βαρύς, barýs), because, at the time of their naming, most known elementary particles had lower masses than the baryons.
KaonIn particle physics, a kaon (ˈkeɪ.ɒn), also called a K meson and denoted _Kaon, is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark) and an up or down antiquark (or quark). Kaons have proved to be a copious source of information on the nature of fundamental interactions since their discovery in cosmic rays in 1947.
Eightfold way (physics)In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. Working alone, both the American physicist Murray Gell-Mann and the Israeli physicist Yuval Ne'eman proposed the idea in 1961. The name comes from Gell-Mann's (1961) paper and is an allusion to the Noble Eightfold Path of Buddhism. By 1947, physicists believed that they had a good understanding of what the smallest bits of matter were.
Delta baryonThe Delta baryons (or Δ baryons, also called Delta resonances) are a family of subatomic particle made of three up or down quarks (u or d quarks), the same constituent quarks that make up the more familiar protons and neutrons. Four closely related Δ baryons exist: _Delta++ (constituent quarks: uuu), _Delta+ (uud), _Delta0 (udd), and _Delta- (ddd), which respectively carry an electric charge of +2e, +1e, 0e, and -1e. The Δ baryons have a mass of about 1232MeV/c2; their third component of isospin and they are required to have an intrinsic spin of 3 /2 or higher (half-integer units).
Lambda baryonThe lambda baryons (Λ) are a family of subatomic hadron particles containing one up quark, one down quark, and a third quark from a higher flavour generation, in a combination where the quantum wave function changes sign upon the flavour of any two quarks being swapped (thus slightly different from a neutral sigma baryon, _Sigma0). They are thus baryons, with total isospin of 0, and have either neutral electric charge or the elementary charge +1. The lambda baryon _Lambda0 was first discovered in October 1950, by V.
Sigma baryonThe sigma baryons are a family of subatomic hadron particles which have two quarks from the first flavour generation (up and / or down quarks), and a third quark from a higher flavour generation, in a combination where the wavefunction sign remains constant when any two quark flavours are swapped. They are thus baryons, with total isospin of 1, and can either be neutral or have an elementary charge of +2, +1, 0, or −1. They are closely related to the Lambda baryons, which differ only in the wavefunction's behaviour upon flavour exchange.
HyperonIn particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically represented by the symbol Y. The first research into hyperons happened in the 1950s and spurred physicists on to the creation of an organized classification of particles.
Singlet stateIn quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number . As a result, there is only one spectral line of a singlet state. In contrast, a doublet state contains one unpaired electron and shows splitting of spectral lines into a doublet; and a triplet state has two unpaired electrons and shows threefold splitting of spectral lines.
Lattice QCDLattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered. Analytic or perturbative solutions in low-energy QCD are hard or impossible to obtain due to the highly nonlinear nature of the strong force and the large coupling constant at low energies.
SkyrmionIn particle theory, the skyrmion (ˈskɜrmi.ɒn) is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by (and named after) Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.