Concept

Newton's method

Summary
In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f′, and an initial guess x0 for a root of f. If the function satisfies sufficient assumptions and the initial guess is close, then :x_{1} = x_0 - \frac{f(x_0)}{f'(x_0)} is a better approximation of the root than x0. Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0, f(x0)): that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as :x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} until a sufficiently precise value is reached. The number of correct digits roughly doubles with each st
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

No results

Related courses

Loading

Related lectures

Loading