Résumé
vignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale. Thomas Simpson (1710-1761) élargit considérablement le domaine d'application de l'algorithme en montrant, grâce à la notion de dérivée, comment on pouvait l'utiliser pour calculer une solution d'une équation non linéaire, pouvant ne pas être un polynôme, et d'un système formé de telles équations. Sous sa forme moderne, l'algorithme peut être présenté brièvement comme suit : à chaque itération, la fonction dont on cherche un zéro est linéarisée en l'itéré (ou point) courant et l'itéré suivant est pris égal au zéro de la fonction linéarisée. Cette description sommaire indique qu'au moins deux conditions sont requises pour la bonne marche de l'algorithme : la fonction doit être dérivable aux points visités (pour pouvoir y linéariser la fonction) et les dérivées ne doivent pas s'y annuler (pour que la fonction linéarisée ait un zéro) ; s'ajoute à ces conditions la contrainte forte de devoir prendre le premier itéré assez proche d'un zéro régulier de la fonction (i.e., en lequel la dérivée de la fonction ne s'annule pas), pour que la convergence du processus soit assurée. L'intérêt principal de l'algorithme de Newton est sa convergence quadratique locale. En termes imagés mais peu précis, cela signifie que le nombre de chiffres significatifs corrects des itérés double à chaque itération, asymptotiquement. Comme le nombre de chiffres significatifs représentables par un ordinateur est d’environ 15 chiffres décimaux (sur un ordinateur qui respecte la norme IEEE-754), on peut simplifier grossièrement les propriétés de convergence de l'algorithme de Newton en disant que, soit il converge en moins de 10 itérations, soit il diverge.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.