In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function
where and are vector spaces (or modules over a commutative ring), with the following property: for each , if all of the variables but are held constant, then is a linear function of .
A multilinear map of one variable is a linear map, and of two variables is a bilinear map. More generally, a multilinear map of k variables is called a k-linear map. If the codomain of a multilinear map is the field of scalars, it is called a multilinear form. Multilinear maps and multilinear forms are fundamental objects of study in multilinear algebra.
If all variables belong to the same space, one can consider symmetric, antisymmetric and alternating k-linear maps. The latter coincide if the underlying ring (or field) has a characteristic different from two, else the former two coincide.
Any bilinear map is a multilinear map. For example, any inner product on a vector space is a multilinear map, as is the cross product of vectors in .
The determinant of a matrix is an alternating multilinear function of the columns (or rows) of a square matrix.
If is a Ck function, then the th derivative of at each point in its domain can be viewed as a symmetric -linear function .
Let
be a multilinear map between finite-dimensional vector spaces, where has dimension , and has dimension . If we choose a basis for each and a basis for (using bold for vectors), then we can define a collection of scalars by
Then the scalars completely determine the multilinear function . In particular, if
for , then
Let's take a trilinear function
where Vi = R2, di = 2, i = 1,2,3, and W = R, d = 1.
A basis for each Vi is Let
where . In other words, the constant is a function value at one of the eight possible triples of basis vectors (since there are two choices for each of the three ), namely:
Each vector can be expressed as a linear combination of the basis vectors
The function value at an arbitrary collection of three vectors can be expressed as
Or, in expanded form as
There is a natural one-to-one correspondence between multilinear maps
and linear maps
where denotes the tensor product of .