Solution of triangles (solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
A general form triangle has six main characteristics (see picture): three linear (side lengths a, b, c) and three angular (α, β, γ). The classical plane trigonometry problem is to specify three of the six characteristics and determine the other three. A triangle can be uniquely determined in this sense when given any of the following:
Three sides (SSS)
Two sides and the included angle (SAS, side-angle-side)
Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length.
A side and the two angles adjacent to it (ASA)
A side, the angle opposite to it and an angle adjacent to it (AAS).
For all cases in the plane, at least one of the side lengths must be specified. If only the angles are given, the side lengths cannot be determined, because any similar triangle is a solution.
The standard method of solving the problem is to use fundamental relations.
Law of cosines
Law of sines
Sum of angles
Law of tangents
There are other (sometimes practically useful) universal relations: the law of cotangents and Mollweide's formula.
To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle. On the other hand, if the angle is small (or close to 180°), then it is more robust numerically to determine it from its sine than its cosine because the arc-cosine function has a divergent derivative at 1 (or −1).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel in 1746. Thomas Simpson published the now-standard expression in 1748. Karl Mollweide republished the same result in 1808 without citing those predecessors. It can be used to check the consistency of solutions of triangles. Let a, b, and c be the lengths of the three sides of a triangle.
In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. This is also known as the Cot Theorem. Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of cotangents relates the radius of the inscribed circle of a triangle (the inradius) to its sides and angles.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation.
Optical prism comprising two external parallel and reflecting surfaces, one internal interface, parallel to said surfaces and acting as light splitter; said prism furthermore comprising an entrance side forming an angle β with respect to said interface and ...
Covers the concepts of local homeomorphisms and coverings in manifolds, emphasizing the conditions under which a map is considered a local homeomorphism or a covering.
LHCb is one of the four large experiments hosted at the Large Hadron Collider (LHC) at CERN in Geneva. It will start taking data in September 2008, and will then operate for several years. It consists of a single-arm forward spectrometer dedicated to preci ...
Using a series development of the integral solution, a formal backing of the presence of image sources in geometrical acoustics methods has been shown. Furthermore, the existence of "invisible" sources is suggested, especially in the vicinity of obtuse ang ...