Summary
Photocatalytic water splitting is a process that uses photocatalysis for the dissociation of water (H2O) into hydrogen (H2) and oxygen (O2). Only light energy (photons), water, and a catalyst(s) are needed, since this is what naturally occurs in natural photosynthetic oxygen production and CO2 fixation. Photocatalytic water splitting is done by dispersing photocatalyst particles in water or depositing them on a substrate, unlike Photoelectrochemical cell, which are assembled into a cell with a photoelectrode. Hydrogen fuel production using water and light (photocatalytic water splitting), instead of petroleum, is an important renewable energy strategy. Two mole of is split into 1 mole O2 and 2 mole H2 using light in the process shown below. A photon with an energy greater than 1.23 eV is needed to generate an electron–hole pairs, which react with water on the surface of the photocatalyst. The photocatalyst must have a bandgap large enough to split water; in practice, losses from material internal resistance and the overpotential of the water splitting reaction increase the required bandgap energy to 1.6–2.4 eV to drive water splitting. The process of water-splitting is a highly endothermic process (ΔH > 0). Water splitting occurs naturally in photosynthesis when the energy of four photons is absorbed and converted into chemical energy through a complex biochemical pathway (Dolai's or Kok's S-state diagrams). O–H bond homolysis in water requires energy of 6.5 - 6.9 eV (UV photon). Infrared light has sufficient energy to mediate water splitting because it technically has enough energy for the net reaction. However, it does not have enough energy to mediate the elementary reactions leading to the various intermediates involved in water splitting (this is why there is still water on Earth). Nature overcomes this challenge by absorbing four visible photons. In the laboratory, this challenge is typically overcome by coupling the hydrogen production reaction with a sacrificial reductant other than water.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.