In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called real functions) and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions. Let be the set of all functions from a set X to real numbers . Because is a field, may be turned into a vector space and a commutative algebra over the reals with the following operations: – vector addition – additive identity – scalar multiplication – pointwise multiplication These operations extend to partial functions from X to with the restriction that the partial functions f + g and f g are defined only if the domains of f and g have a nonempty intersection; in this case, their domain is the intersection of the domains of f and g. Also, since is an ordered set, there is a partial order on which makes a partially ordered ring. Borel function The σ-algebra of Borel sets is an important structure on real numbers. If X has its σ-algebra and a function f is such that the f −1(B) of any Borel set B belongs to that σ-algebra, then f is said to be measurable. Measurable functions also form a vector space and an algebra as explained above in . Moreover, a set (family) of real-valued functions on X can actually define a σ-algebra on X generated by all preimages of all Borel sets (or of intervals only, it is not important). This is the way how σ-algebras arise in (Kolmogorov's) probability theory, where real-valued functions on the sample space Ω are real-valued random variables. Real numbers form a topological space and a complete metric space. Continuous real-valued functions (which implies that X is a topological space) are important in theories of topological spaces and of metric spaces. The extreme value theorem states that for any real continuous function on a compact space its global maximum and minimum exist.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.