Bell numberIn combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted , where is an integer greater than or equal to zero. Starting with , the first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, ... .
Stirling numbers of the second kindIn mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling. The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices.
Bernoulli polynomialsIn mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula. These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree.
Falling and rising factorialsIn mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
PolylogarithmIn mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Li_s(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral.
Eulerian numberIn combinatorics, the Eulerian number is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element (permutations with "ascents"). Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis. Other notations for are and . The Eulerian polynomials are defined by the exponential generating function The Eulerian numbers may be defined as the coefficients of the Eulerian polynomials: An explicit formula for is For fixed there is a single permutation which has 0 ascents: .
Double factorialIn mathematics, the double factorial of a number n, denoted by n!!, is the product of all the positive integers up to n that have the same parity (odd or even) as n. That is, Restated, this says that for even n, the double factorial is while for odd n it is For example, 9!! = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0!! = 1 as an empty product. The sequence of double factorials for even n = 0, 2, 4, 6, 8,... starts as The sequence of double factorials for odd n = 1, 3, 5, 7, 9,...
Bell polynomialsIn combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in the Faà di Bruno's formula. The partial or incomplete exponential Bell polynomials are a triangular array of polynomials given by where the sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers such that these two conditions are satisfied: The sum is called the nth complete exponential Bell polynomial.
Stirling numberIn mathematics, Stirling numbers arise in a variety of analytic and combinatorial problems. They are named after James Stirling, who introduced them in a purely algebraic setting in his book Methodus differentialis (1730). They were rediscovered and given a combinatorial meaning by Masanobu Saka in 1782. Two different sets of numbers bear this name: the Stirling numbers of the first kind and the Stirling numbers of the second kind. Additionally, Lah numbers are sometimes referred to as Stirling numbers of the third kind.
Symbolic method (combinatorics)In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions.