Osteopenia, known as "low bone mass" or "low bone density", is a condition in which bone mineral density is low. Because their bones are weaker, people with osteopenia may have a higher risk of fractures, and some people may go on to develop osteoporosis. In 2010, 43 million older adults in the US had osteopenia. Unlike osteoporosis, osteopenia does not usually cause symptoms, and losing bone density in itself does not cause pain.
There is no single cause for osteopenia, although there are several risk factors, including modifiable (behavioral, including dietary and use of certain drugs) and non-modifiable (for instance, loss of bone mass with age). For people with risk factors, screening via a DXA scanner may help to detect the development and progression of low bone density. Prevention of low bone density may begin early in life and includes a healthy diet and weight-bearing exercise, as well as avoidance of tobacco and alcohol. The treatment of osteopenia is controversial: non-pharmaceutical treatment involves preserving existing bone mass via healthy behaviors (dietary modification, weight-bearing exercise, avoidance or cessation of smoking or heavy alcohol use). Pharmaceutical treatment for osteopenia, including bisphosphonates and other medications, may be considered in certain cases but is not without risks. Overall, treatment decisions should be guided by considering each patient's constellation of risk factors for fractures.
Many divide risk factors for osteopenia into fixed (non-changeable) and modifiable factors. Osteopenia can also be secondary to other diseases. An incomplete list of risk factors:
Age: bone density peaks at age 35, and then decreases. Bone density loss occurs in both men and women
Ethnicity: European and Asian people have increased risk
Sex: women are at higher risk, particularly those with early menopause
Family history: low bone mass in the family increases risk
Tobacco use
Alcohol use
Inactivity – particularly lack of weight-bearing or resistance activities
Insufficient caloric intake – osteopenia can be connected to female athlete triad syndrome, which occurs in female athletes as a combination of energy deficiency, menstrual irregularities, and low bone mineral density.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An estrogen (E) is a type of medication which is used most commonly in hormonal birth control and menopausal hormone therapy, and as part of feminizing hormone therapy for transgender women. They can also be used in the treatment of hormone-sensitive cancers like breast cancer and prostate cancer and for various other indications. Estrogens are used alone or in combination with progestogens. They are available in a wide variety of formulations and for use by many different routes of administration.
Hormone replacement therapy (HRT), also known as menopausal hormone therapy or postmenopausal hormone therapy, is a form of hormone therapy used to treat symptoms associated with female menopause. These symptoms can include hot flashes, vaginal atrophy, accelerated skin aging, vaginal dryness, decreased muscle mass, sexual dysfunction, and bone loss or osteoporosis. They are in large part related to the diminished levels of sex hormones that occur during menopause. Estrogens and progestogens are the main hormone drugs used in HRT.
Vitamin D is a group of fat-soluble secosteroids responsible for increasing intestinal absorption of calcium, magnesium, and phosphate, and many other biological effects. In humans, the most important compounds in this group are vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol). The major natural source of the vitamin is synthesis of cholecalciferol in the lower layers of epidermis of the skin, through a photo-chemical reaction of UVB light, from the sun exposure (specifically UVB radiation) or UVB lamps.
Explores methods to improve glenoid bone mineral density analysis using CT scans.
, ,
A mechanistic understanding of bone fracture is indispensable for developing improved fracture risk assessment in clinics. Since bone is a hierarchically structured material, gaining such knowledge requires analysis at multiple length scales. Here, the ten ...
An individual polygenic risk score was associated with osteoporosis in people living with HIV. The genetic effect was robust, as it persisted after multivariable adjustment for established traditional and HIV-related osteoporosis risk factors, including te ...
OXFORD UNIV PRESS INC2023
, , , , ,
The objective of this study was to determine the normative bone mineral density (BMD) of cortical and trabecular bone regions in the adult glenoid and its dependence on the subject's age and sex. We analyzed computed tomography (CT) scans of 441 shoulders ...