En informatique, les contraintes d'alignement en mémoire limitent à certains multiples d'adresse mémoire, où certaines données et instructions machine peuvent être enregistrées. En outre, les optimisations d'alignement mémoire permettent d'influencer la vitesse d'exécution d'un programme uniquement en choisissant bien les adresses. Pour augmenter leurs performances, les processeurs sont souvent reliés à la mémoire vive par un bus de données plus large que la granularité de leur adressage : par exemple un processeur est capable d'adresser individuellement des octets (8 bits), relié à la mémoire par un bus de (32 bits). Si une donnée de ne se trouve pas à une adresse divisible par 4, alors, selon le modèle de processeur, il y a : violation de contrainte : une erreur d'alignement interrompt l'exécution des instructions ; alignement non optimal : deux fois bien alignés sont lus, puis les mal alignés sont extraits de ces , ce qui prend bien plus de temps que lire bien alignés. La règle généralement applicable pour qu'une donnée soit bien alignée, est qu'elle se trouve à une adresse divisible par sa taille. Ainsi, une donnée occupant un seul octet est toujours bien alignée, une donnée de deux octets est bien alignée si elle est à une adresse paire, une donnée de est bien alignée si elle est à une adresse divisible par 4, etc. Toutefois, la contrainte d'alignement n'excède pas le matériel sous-jacent. Les contraintes d'alignement en mémoire dépendent de l'architecture du processeur. L'optimisation de l'alignement est plus subtil, car il peut dépendre de la mémoire cache du processeur, de la pagination de la mémoire virtuelle, et autres caractéristiques de l'accès à la mémoire. Certains compilateurs permettent d'influencer l'alignement des données. Les processeurs RISC n'ont généralement qu'une seule taille d'instruction machine, et ces instructions doivent être bien alignées. En revanche, les processeurs CISC ont des instructions de tailles variables.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
ME-213: Programmation pour ingénieur
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
CS-420: Advanced compiler construction
Students learn several implementation techniques for modern functional and object-oriented programming languages. They put some of them into practice by developing key parts of a compiler and run time
Afficher plus
Publications associées (14)

Formal Verification of Rust with Stainless

Writing correct software is hard, yet in systems that have a high failure cost or are not easily upgraded like blockchains, bugs and security problems cannot be tolerated. Therefore, these systems are perfect use cases for formal verification, the task of ...
2021
Afficher plus
Concepts associés (15)
Rust (langage)
Rust est un langage de programmation compilé multi-paradigme conçu et développé par Mozilla Research depuis 2010. Il a été conçu pour être « un langage fiable, concurrent, pratique », supportant les styles de programmation purement fonctionnel, modèle d'acteur, procédural, ainsi qu'orienté objet sous certains aspects. En 2020, ses domaines de prédilection sont la programmation système, les applications en ligne de commande, les applications Web via WebAssembly, les services réseaux et les systèmes embarqués.
C syntax
The syntax of the C programming language is the set of rules governing writing of software in the C language. It is designed to allow for programs that are extremely terse, have a close relationship with the resulting object code, and yet provide relatively high-level data abstraction. C was the first widely successful high-level language for portable operating-system development. C syntax makes use of the maximal munch principle. C data types The C language represents numbers in three forms: integral, real and complex.
Types de donnée du langage C
Les types de donnée du langage C définissent les caractéristiques de stockage et les opérations disponibles pour chaque valeur et chaque variable d'un code source en langage C. Les types fondamentaux du langage C sont conçus pour pouvoir correspondre aux types supportés par l'architecture de processeur cible. Le langage C possède une vingtaine de types fondamentaux pour représenter des nombres naturels, entiers et réels. Le langage offre une syntaxe pour construire des types d'adresse mémoire (pointeurs) vectoriels (tableaux) et composés (structures).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.