Edge (geometry)In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides) meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.
GeometryGeometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Chord (geometry)A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's diameter. The word chord is from the Latin chorda meaning bowstring. Circle#Chord Among properties of chords of a circle are the following: Chords are equidistant from the center if and only if their lengths are equal.
DiagonalIn geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word diagonal derives from the ancient Greek διαγώνιος diagonios, "from angle to angle" (from διά- dia-, "through", "across" and γωνία gonia, "angle", related to gony "knee"); it was used by both Strabo and Euclid to refer to a line connecting two vertices of a rhombus or cuboid, and later adopted into Latin as diagonus ("slanting line").
Angle bisector theoremIn geometry, the angle bisector theorem is concerned with the relative lengths of the two segments that a triangle's side is divided into by a line that bisects the opposite angle. It equates their relative lengths to the relative lengths of the other two sides of the triangle. Consider a triangle △ABC. Let the angle bisector of angle ∠ A intersect side at a point D between B and C.
Equipollence (geometry)In Euclidean geometry, equipollence is a binary relation between directed line segments. A line segment AB from point A to point B has the opposite direction to line segment BA. Two parallel line segments are equipollent when they have the same length and direction. A definitive feature of Euclidean space is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram: If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.
Annulus (mathematics)In mathematics, an annulus (plural annuli or annuluses) is the region between two concentric circles. Informally, it is shaped like a ring or a hardware washer. The word "annulus" is borrowed from the Latin word anulus or annulus meaning 'little ring'. The adjectival form is annular (as in annular eclipse). The open annulus is topologically equivalent to both the open cylinder S1 × (0,1) and the punctured plane.
MidpointIn geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment. The midpoint of a segment in n-dimensional space whose endpoints are and is given by That is, the ith coordinate of the midpoint (i = 1, 2, ..., n) is Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.
Point (geometry)In classical Euclidean geometry, a point is a primitive notion that models an exact location in space, and has no length, width, or thickness. In modern mathematics, a point refers more generally to an element of some set called a space. Being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called axioms, that it must satisfy; for example, "there is exactly one line that passes through two different points".
DiameterIn geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for the diameter of a sphere. In more modern usage, the length of a diameter is also called the diameter.