Cancer screening aims to detect cancer before symptoms appear. This may involve blood tests, urine tests, DNA tests, other tests, or medical imaging. The benefits of screening in terms of cancer prevention, early detection and subsequent treatment must be weighed against any harms.
Universal screening, also known as mass screening or population screening, involves screening everyone, usually within a specific age group. Selective screening identifies people who are known to be at higher risk of developing cancer, such as people with a family history of cancer.
Screening can lead to false positive results and subsequent invasive procedures. Screening can also lead to false negative results, where an existing cancer is missed. Controversy arises when it is not clear if the benefits of screening outweigh the risks of the screening procedure itself, and any follow-up diagnostic tests and treatments.
Screening tests must be effective, safe, well tolerated with acceptably low rates of false positive and false negative results. If signs of cancer are detected, more definitive and invasive follow-up tests are performed to reach a diagnosis. Screening for cancer can lead to cancer prevention and earlier diagnosis. Early diagnosis may lead to higher rates of successful treatment and extended life. However, it may also falsely appear to increase the time to death through lead time bias or length time bias.
Screening can help identify cancers at early stages. Good cancer screening would not be more likely to cause harm than to provide useful information. In general, cancer screening has risks and should not be done except with a medical indication.
Different kinds of cancer screening procedures have different risks, but good tests share some characteristics. If a test detects cancer, then that test result should also lead to options for treatment. Good tests come with a patient explanation of why that person has high enough risk of cancer to justify the test.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Breast cancer screening is the medical screening of asymptomatic, apparently healthy women for breast cancer in an attempt to achieve an earlier diagnosis. The assumption is that early detection will improve outcomes. A number of screening tests have been employed, including clinical and self breast exams, mammography, genetic screening, ultrasound, and magnetic resonance imaging. A clinical or self breast exam involves feeling the breast for lumps or other abnormalities.
A BRCA mutation is a mutation in either of the BRCA1 and BRCA2 genes, which are tumour suppressor genes. Hundreds of different types of mutations in these genes have been identified, some of which have been determined to be harmful, while others have no proven impact. Harmful mutations in these genes may produce a hereditary breast–ovarian cancer syndrome in affected persons. Only 5–10% of breast cancer cases in women are attributed to BRCA1 and BRCA2 mutations (with BRCA1 mutations being slightly more common than BRCA2 mutations), but the impact on women with the gene mutation is more profound.
Screening, in medicine, is a strategy used to look for as-yet-unrecognised conditions or risk markers. This testing can be applied to individuals or to a whole population. The people tested may not exhibit any signs or symptoms of a disease, or they might exhibit only one or two symptoms, which by themselves do not indicate a definitive diagnosis. Screening interventions are designed to identify conditions which could at some future point turn into disease, thus enabling earlier intervention and management in the hope to reduce mortality and suffering from a disease.
(1) To expose PhD students to cutting-edge research in the field of Cancer Research through attendance of lectures given by world-leading distinguished scientists in the field.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
The goal of this course is to instruct the student how fundamental scientific knowledge can be applied for drug discovery and development. We will demonstrate these principles with examples, including
Explores evaluation protocols in machine learning, including recall, precision, accuracy, and specificity, with real-world examples like COVID-19 testing.
Macrocycles provide an attractive modality for drug development but the identification of ligands to targets of interest is hindered by the lack of large macrocyclic compound libraries for high-throughput screening. A strategy to efficiently synthesize lar ...
The invention provides microfluidic screening systems for the identification of compounds or compositions influencing cellular transcriptomes. The invention is predicated upon taking into account differences in newly synthesized mRNA in contrast to so call ...
Background Circadian rhythms regulate cellular physiology and could in fl uence the ef fi cacy of endocrine therapy (ET) in breast cancer (BC). We prospectively tested this hypothesis within the UNIRAD adjuvant phase III trial (NCT01805271). Methods 1278 p ...