A snow gauge is a type of instrument used by meteorologists and hydrologists to gather and measure the amount of solid precipitation (as opposed to liquid precipitation, which is measured by a rain gauge) over a set period of time.
The first use of snow gauges were precipitation gauges that was widely used in 1247 during the Southern Song dynasty to gather meteorological data. The Song Chinese mathematician and inventor Qin Jiushao records the use of gathering rain and snowfall measurements in the Song mathematical treatise Mathematical Treatise in Nine Sections. The book discusses the use of large conical or barrel-shaped snow gauges made from bamboo situated in mountain passes and uplands, which are speculated to be first referenced to snow measurement.
The snow gauge consists of two parts: a copper catchment container; and the funnel-shaped gauge itself. The actual gauge is mounted on a pipe outdoors and is approximately in height, while the container is in length.
When snow is collected, the container is removed and replaced with a spare one. The snow is then melted while it is still in the container, and then poured into a glass measuring graduate. While the depth of snow is normally measured in centimetres, the measurement of melted snow (water equivalent) is in millimetres.
An estimate of the snow depth can be obtained by multiplying the water equivalent by a factor of 10. This multiplier can vary over a wide range, however, with many citing a range from 5 to 30, while the National Snow and Ice Data Center has quoted a range as wide as from 3 to 100. Any proposed factor depends on the water content of the snow (how "dry" it is), so this at best provides only a rough estimate of snow depth.
The snow gauge suffers from the same problem as that of the rain gauge when conditions are windy. If the wind is strong enough, then the snow may be blown across the wind gauge, and the amount of snow fallen will be under-reported. However, due to the shape and size of the funnel, this is a minor problem.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
Explores snowpack water balance, snowmelt, ablation, and energy-water balance link using degree day models.
Explores snow measurement techniques, including SWE, gauges, and new technologies.
Covers the principles and applications of the snowpack model.
Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems. The major cause of rain production is moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts.
Hydrology () is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and drainage basin sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity), so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate.
Snow plays a crucial role in processes regulating ecosystems, the climate, and human development. Mountain snowpack in particular has great relevance for downstream communities. Knowledge about the distribution and properties of the snowpack thus help in p ...
EPFL2024
, , , , , , ,
Correction to: Boundary-Layer Meteorology (2022) 182:119–146 https://doi.org/10.1007/s10546-021-00653-x In the original article author found some corrections post publication that the units in Eq. 7 are currently not consistent and the text refers to a d ...
The performance of a set of atmospheric models and meteorological reanalyses in the representation of precipitation days in Antarctica is assessed using ground-based observations such as a precipitation gauge and a Micro Rain Radar during the Year Of Polar ...