**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Moment Semantics for Reversible Rule-Based Systems

Abstract

We develop a notion of stochastic rewriting over marked graphs – i.e. directed multigraphs with degree constraints. The approach is based on double-pushout (DPO) graph rewriting. Marked graphs are expressive enough to internalize the ‘no-dangling-edge’ condition inherent in DPO rewriting. Our main result is that the linear span of marked graph occurrence-counting functions – or motif functions – form an algebra which is closed under the infinitesimal generator of (the Markov chain associated with) any such rewriting system. This gives a general procedure to derive the moment semantics of any such rewriting system, as a countable (and recursively enumerable) system of differential equations indexed by motif functions. The differential system describes the time evolution of moments (of any order) of these motif functions under the rewriting system. We illustrate the semantics using the example of preferential attachment networks; a well-studied complex system, which meshes well with our notion of marked graph rewriting. We show how in this case our procedure obtains a finite description of all moments of degree counts for a fixed degree.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (45)

Related MOOCs (32)

Related publications (38)

Graph rewriting

In computer science, graph transformation, or graph rewriting, concerns the technique of creating a new graph out of an original graph algorithmically. It has numerous applications, ranging from software engineering (software construction and also software verification) to layout algorithms and picture generation. Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph.

Graph (discrete mathematics)

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

Rewriting

In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...

Fabio Nobile, Yoshihito Kazashi, Fabio Zoccolan

In this paper, we set the mathematical foundations of the Dynamical Low Rank Approximation (DLRA) method for high-dimensional stochastic differential equations. DLRA aims at approximating the solution as a linear combination of a small number of basis vect ...

2023,

Reduced-order models are indispensable for multi-query or real-time problems. However, there are still many challenges to constructing efficient ROMs for time-dependent parametrized problems. Using a linear reduced space is inefficient for time-dependent n ...