Affective computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects. It is an interdisciplinary field spanning computer science, psychology, and cognitive science. While some core ideas in the field may be traced as far back as to early philosophical inquiries into emotion, the more modern branch of computer science originated with Rosalind Picard's 1995 paper on affective computing and her book Affective Computing published by MIT Press. One of the motivations for the research is the ability to give machines emotional intelligence, including to simulate empathy. The machine should interpret the emotional state of humans and adapt its behavior to them, giving an appropriate response to those emotions.
Detecting emotional information usually begins with passive sensors that capture data about the user's physical state or behavior without interpreting the input. The data gathered is analogous to the cues humans use to perceive emotions in others. For example, a video camera might capture facial expressions, body posture, and gestures, while a microphone might capture speech. Other sensors detect emotional cues by directly measuring physiological data, such as skin temperature and galvanic resistance.
Recognizing emotional information requires the extraction of meaningful patterns from the gathered data. This is done using machine learning techniques that process different modalities, such as speech recognition, natural language processing, or facial expression detection. The goal of most of these techniques is to produce labels that would match the labels a human perceiver would give in the same situation: For example, if a person makes a facial expression furrowing their brow, then the computer vision system might be taught to label their face as appearing "confused" or as "concentrating" or "slightly negative" (as opposed to positive, which it might say if they were smiling in a happy-appearing way). These labels may or may not correspond to what the person is actually feeling.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A facial recognition system is a technology potentially capable of matching a human face from a or a video frame against a database of faces. Such a system is typically employed to authenticate users through ID verification services, and works by pinpointing and measuring facial features from a given image. Development began on similar systems in the 1960s, beginning as a form of computer application. Since their inception, facial recognition systems have seen wider uses in recent times on smartphones and in other forms of technology, such as robotics.
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Emotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
On s'intéresse ici à nos réactions émotionnelles : comment elles émergent ? Quelles sont les théories du domaine ? Comment elles influencent notre quotidien ? Nous nous pencherons aussi sur les phénom
Most of us aspire to live meaningful lives. Yet, many of us would struggle to explain what a meaningful life is. This course provides philosophical tools and frameworks useful to understand our aspira
Students will develop an understanding of the psychological and social processes of learning the following competences: (i) ethical sensitivity, (ii) ethical reasoning, (iii) ethical motivation, and (
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. O ...
Ieee Computer Soc2023
, , , , ,
Deepfakes - synthetic videos generated by machine learning models - are becoming increasingly sophisticated. While they have several positive use cases, their potential for harm is also high. Deepfake production involves input from multiple engineers, maki ...
On his way to a political philosophy founded not on how we would like things to be, but on how they are, the philosopher Spinoza had to take a step back and develop an ethics that presented affects as properties of bodies. From there, and in order to deter ...