Concept

Half-precision floating-point format

Summary
In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ±65,504, with the minimum value above 1 being 1 + 1/1024. Depending on the computer, half-precision can be over an order of magnitude faster than double precision, e.g. 550 PFLOPS for half-precision vs 37 PFLOPS for double precision on one cloud provider. Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi). ILM was searching for an image format that could handle a wide dynamic range, but without the hard drive and memory cost of single or double precision floating point. The hardware-accelerated programmable shading group led by John Airey at SGI (Silicon Graphics) invented the s10e5 data type in 1997 as part of the 'bali' design effort. This is described in a SIGGRAPH 2000 paper (see section 4.3) and further documented in US patent 7518615. It was popularized by its use in the open-source OpenEXR image format. Nvidia and Microsoft defined the half datatype in the Cg language, released in early 2002, and implemented it in silicon in the GeForce FX, released in late 2002. Since then support for 16-bit floating point math in graphics cards has become very common. The F16C extension in 2012 allows x86 processors to convert half-precision floats to and from single-precision floats with a machine instruction.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.