**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Single-precision floating-point format

Summary

Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.4028235 × 1038. All integers with 7 or fewer decimal digits, and any 2n for a whole number −149 ≤ n ≤ 127, can be converted exactly into an IEEE 754 single-precision floating-point value.
In the IEEE 754-2008 standard, the 32-bit base-2 format is officially referred to as binary32; it was called single in IEEE 754-1985. IEEE 754 specifies additional floating-point types, such as 64-bit base-2 double precision and, more recently, base-10 representations.
One of the first programming languages to provide single- and double-precision floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers. E.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.
Single precision is termed REAL in Fortran, SINGLE-FLOAT in Common Lisp, float in C, C++, C#, Java, Float in Haskell and Swift, and Single in Object Pascal (Delphi), Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers. In most implementations of PostScript, and some embedded systems, the only supported precision is single.
The IEEE 754 standard specifies a binary32 as having:
Sign bit: 1 bit
Exponent width: 8 bits
Significand precision: 24 bits (23 explicitly stored)
This gives from 6 to 9 significant decimal digits precision.

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (2)

Related people (23)

Related concepts (16)

Related courses (24)

Related publications (85)

Related units (1)

Ontological neighbourhood

Related lectures (67)

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Precision (computer science)

In computer science, the precision of a numerical quantity is a measure of the detail in which the quantity is expressed. This is usually measured in bits, but sometimes in decimal digits. It is related to precision in mathematics, which describes the number of digits that are used to express a value. Some of the standardized precision formats are Half-precision floating-point format Single-precision floating-point format Double-precision floating-point format Quadruple-precision floating-point format Octuple-precision floating-point format Of these, octuple-precision format is rarely used.

Half-precision floating-point format

In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits.

Fixed-point arithmetic

In computing, fixed-point is a method of representing fractional (non-integer) numbers by storing a fixed number of digits of their fractional part. Dollar amounts, for example, are often stored with exactly two fractional digits, representing the cents (1/100 of dollar). More generally, the term may refer to representing fractional values as integer multiples of some fixed small unit, e.g. a fractional amount of hours as an integer multiple of ten-minute intervals.

Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.

Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio

Visual computing and machine learning are characterized by their reliance on numerical algorithms to process large amounts of information such as images, shapes, and 3D volumes. This course will famil

Computer Arithmetic: Floating Point Numbers

Explores computer arithmetic, emphasizing fixed-point and floating-point numbers, IEEE 754 standard, dynamic range, and floating-point operations in MIPS architecture.

Computer Arithmetic: Floating Point Operations

Covers the basics of computer arithmetic, focusing on floating point numbers and their operations.

Information Representation: Binary Representations

Explores binary information representation, efficiency, byte usage, and integer representation.

Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...

Josephine Anna Eleanor Hughes, Nana Obayashi

The study of non-contact manipulation in water, and the ability to robotically control floating objects has gained recent attention due to wide-ranging potential applications, including the analysis of plastic pollution in the oceans and the optimization o ...

David Atienza Alonso, Giovanni Ansaloni, Alexandre Sébastien Julien Levisse, Marco Antonio Rios, Flavio Ponzina

Compute memories are memory arrays augmented with dedicated logic to support arithmetic. They support the efficient execution of data-centric computing patterns, such as those characterizing Artificial Intelligence (AI) algorithms. These architectures can ...

2023