FibonacciFibonacci (ˌfɪbəˈnɑːtʃi; also USˌfiːb-, fiboˈnattʃi; 1170 – 1240–50), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages". The name he is commonly called, Fibonacci, was made up in 1838 by the Franco-Italian historian Guillaume Libri and is short for filius Bonacci ('son of Bonacci').
Leibniz formula for πIn mathematics, the Leibniz formula for pi, named after Gottfried Wilhelm Leibniz, states that an alternating series. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), and was later independently rediscovered by James Gregory in 1671 and Leibniz in 1673.
Pi (letter)Pi (/ˈpaɪ/; Ancient Greek /piː/ or /peî/, uppercase Π, lowercase π, cursive π; πι pi) is the sixteenth letter of the Greek alphabet, meaning units united, and representing the voiceless bilabial plosive p. In the system of Greek numerals it has a value of 80. It was derived from the Phoenician letter Pe (). Letters that arose from pi include Latin P, Cyrillic Pe (П, п), Coptic pi (Ⲡ, ⲡ), and Gothic pairthra (𐍀). The uppercase letter Π is used as a symbol for: In textual criticism, Codex Petropolitanus, a 9th-century uncial codex of the Gospels, now located in St.
Charles HermiteCharles Hermite (ʃaʁl ɛʁˈmit) FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra. Hermite polynomials, Hermite interpolation, Hermite normal form, Hermitian operators, and cubic Hermite splines are named in his honor. One of his students was Henri Poincaré. He was the first to prove that e, the base of natural logarithms, is a transcendental number.
Ferdinand von LindemannCarl Louis Ferdinand von Lindemann (12 April 1852 – 6 March 1939) was a German mathematician, noted for his proof, published in 1882, that pi (pi) is a transcendental number, meaning it is not a root of any polynomial with rational coefficients. Lindemann was born in Hanover, the capital of the Kingdom of Hanover. His father, Ferdinand Lindemann, taught modern languages at a Gymnasium in Hanover. His mother, Emilie Crusius, was the daughter of the Gymnasium's headmaster. The family later moved to Schwerin, where young Ferdinand attended school.
Liouville numberIn number theory, a Liouville number is a real number with the property that, for every positive integer , there exists a pair of integers with such that Liouville numbers are "almost rational", and can thus be approximated "quite closely" by sequences of rational numbers. Precisely, these are transcendental numbers that can be more closely approximated by rational numbers than any algebraic irrational number can be. In 1844, Joseph Liouville showed that all Liouville numbers are transcendental, thus establishing the existence of transcendental numbers for the first time.
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
Circular arcA circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than pi radians (180 degrees); and the other arc, the major arc, subtends an angle greater than pi radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle.
Quadratic irrational numberIn mathematics, a quadratic irrational number (also known as a quadratic irrational or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients.
Proof that π is irrationalIn the 1760s, Johann Heinrich Lambert was the first to prove that the number pi is irrational, meaning it cannot be expressed as a fraction , where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven, and Nicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich. Many of these are proofs by contradiction.