Leonardo Fibonaccithumb|right|upright 1.32|Statue de Léonard de Pise, dans sa ville natale. Leonardo Fibonacci ou « Léonard de Pise » (vers 1170 à Pise - vers 1250) est un mathématicien italien connu notamment par la suite de Fibonacci. Ses travaux revêtent une importance considérable car ils sont le chainon apportant notamment la notation des chiffres indo-arabes aux mathématiques de l'Occident. L'homme est dénommé dans les manuscrits comme Leonardus Pisanus, « Léonard de Pise », ou encore Leonardus filius Bonacci, Leonardus Pisanus de filiis Bonacci et Leonardus Bigollus.
Leibniz formula for πIn mathematics, the Leibniz formula for pi, named after Gottfried Wilhelm Leibniz, states that an alternating series. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), and was later independently rediscovered by James Gregory in 1671 and Leibniz in 1673.
Pi (lettre grecque)Pi (capitale Π, minuscule π ou parfois π ; en grec πι) est la lettre de l'alphabet grec, précédée par omicron et suivie par rhô. Dérivée de la lettre pey x12px de l'alphabet phénicien, elle est l'ancêtre de la lettre P de l'alphabet latin et de la lettre П de l'alphabet cyrillique. En grec moderne, la lettre pi représente une consonne occlusive bilabiale sourde, . Cette valeur est en général également celle du grec ancien.
Charles HermiteCharles Hermite (1822-1901) est un mathématicien français. Ses travaux concernent surtout la théorie des nombres, les formes quadratiques, les polynômes orthogonaux, les fonctions elliptiques et les équations différentielles. Plusieurs entités mathématiques sont qualifiées d'hermitiennes en son honneur. Il est aussi connu comme l'un des premiers à utiliser les matrices. Il fut le premier à montrer, en 1873, qu'une constante naturelle de l'analyse, en l'occurrence le nombre e, base des logarithmes naturels, est transcendant.
Ferdinand von LindemannCarl Louis Ferdinand von Lindemann (-) est un mathématicien allemand. Il est passé à la postérité pour sa démonstration, publiée en 1882, de la transcendance du nombre π, c'est-à-dire qu'il n'existe aucun polynôme non nul à coefficients rationnels dont π soit une racine. Son père Ferdinand enseigne les langues modernes au lycée et sa mère est la fille du directeur. La famille déménage ensuite à Schwerin. Ferdinand étudie les mathématiques à Göttingen, Erlangen et Munich.
Nombre de LiouvilleEn mathématiques, et plus précisément en théorie des nombres, un nombre de Liouville est un nombre réel x ayant la propriété suivante :pour tout entier n, il existe des entiers q > 1 et p tels que 0 < |x – p/q| < 1/q ou, ce qui est équivalent : pour tout entier n et tout réel , il existe des entiers q > 0 et p tels que 0 < |x – p/q| < A/q. Un nombre de Liouville peut ainsi être approché « de manière très fine » par une suite de nombres rationnels.
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
Arc de cerclethumb|Un arc de cercle (parme) de rayon R et de longueur d, avec son angle au centre α, sa corde 2c et sa flèche t Un arc de cercle est une portion de cercle limitée par deux points. Deux points A et B d'un cercle découpent celui-ci en deux arcs. Quand les points ne sont pas diamétralement opposés, l'un des arcs est plus petit qu'un demi-cercle et l'autre plus grand qu'un demi-cercle. Le plus petit des arcs est, en général, noté et l'autre parfois noté . On considère un cercle de centre O, et un arc d'extrémités A et B.
Irrationnel quadratiqueUn irrationnel quadratique est un nombre irrationnel solution d'une équation quadratique à coefficients rationnels, autrement dit, un nombre réel algébrique de degré 2. Il engendre donc un corps quadratique réel Q(), où d est un entier positif sans facteur carré. Les irrationnels quadratiques sont caractérisés par la périodicité à partir d'un certain rang de leur développement en fraction continue (théorème de Lagrange). Les exemples les plus simples d'irrationnels quadratiques sont les racines carrées d'entiers naturels non carrés (le plus célèbre étant ).
Preuve de l'irrationalité de πDans les années 1760, Johann Heinrich Lambert a été le premier à prouver que le nombre est irrationnel, c'est-à-dire qu'il ne peut pas s'écrire sous forme d'une fraction a/b, avec a et b entiers non nuls. Au , Charles Hermite établit une preuve ne reposant sur aucun prérequis au-delà de l'analyse élémentaire. Des versions simplifiées de la preuve de Hermite ont été plus tard trouvées par Mary Cartwright et Ivan Niven. Une autre preuve, une version simplifiée de celle de Lambert, est trouvée par Miklós Laczkovich.