Special number field sieveIn number theory, a branch of mathematics, the special number field sieve (SNFS) is a special-purpose integer factorization algorithm. The general number field sieve (GNFS) was derived from it. The special number field sieve is efficient for integers of the form re ± s, where r and s are small (for instance Mersenne numbers). Heuristically, its complexity for factoring an integer is of the form: in O and L-notations.
Class number problemIn mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields (for negative integers d) having class number n. It is named after Carl Friedrich Gauss. It can also be stated in terms of discriminants. There are related questions for real quadratic fields and for the behavior as .
Ulam spiralThe Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. It is constructed by writing the positive integers in a square spiral and specially marking the prime numbers. Ulam and Gardner emphasized the striking appearance in the spiral of prominent diagonal, horizontal, and vertical lines containing large numbers of primes.
Jacobi symbolJacobi symbol k/n for various k (along top) and n (along left side). Only 0 ≤ k < n are shown, since due to rule (2) below any other k can be reduced modulo n. Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if k is a quadratic residue modulo a coprime n, then k/n = 1, but not all entries with a Jacobi symbol of 1 (see the n = 9 and n = 15 rows) are quadratic residues. Notice also that when either n or k is a square, all values are nonnegative.
Terence TaoTerence Chi-Shen Tao (; born 17 July 1975) is an Australian mathematician. He is a professor of mathematics at the University of California, Los Angeles (UCLA), where he holds the James and Carol Collins chair. His research includes topics in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, probability theory, compressed sensing and analytic number theory. Tao was born to ethnic Chinese immigrant parents and raised in Adelaide.
Sexy primeIn number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and 11 − 5 = 6. The term "sexy prime" is a pun stemming from the Latin word for six: sex. If p + 2 or p + 4 (where p is the lower prime) is also prime, then the sexy prime is part of a prime triplet.