In number theory, a branch of mathematics, the special number field sieve (SNFS) is a special-purpose integer factorization algorithm. The general number field sieve (GNFS) was derived from it. The special number field sieve is efficient for integers of the form re ± s, where r and s are small (for instance Mersenne numbers). Heuristically, its complexity for factoring an integer is of the form: in O and L-notations. The SNFS has been used extensively by NFSNet (a volunteer distributed computing effort), NFS@Home and others to factorise numbers of the Cunningham project; for some time the records for integer factorization have been numbers factored by SNFS. The SNFS is based on an idea similar to the much simpler rational sieve; in particular, readers may find it helpful to read about the rational sieve first, before tackling the SNFS. The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base. Second, multiply together subsets of these relations in such a way that all the exponents are even, resulting in congruences of the form a2≡b2 (mod n). These in turn immediately lead to factorizations of n: n=gcd(a+b,n)×gcd(a-b,n). If done right, it is almost certain that at least one such factorization will be nontrivial. The second step is identical to the case of the rational sieve, and is a straightforward linear algebra problem. The first step, however, is done in a different, more efficient way than the rational sieve, by utilizing number fields. Let n be the integer we want to factor. We pick an irreducible polynomial f with integer coefficients, and an integer m such that f(m)≡0 (mod n) (we will explain how they are chosen in the next section). Let α be a root of f; we can then form the ring Z[α]. There is a unique ring homomorphism φ from Z[α] to Z/nZ that maps α to m.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.