Sociable numberIn mathematics, sociable numbers are numbers whose aliquot sums form a periodic sequence. They are generalizations of the concepts of perfect numbers and amicable numbers. The first two sociable sequences, or sociable chains, were discovered and named by the Belgian mathematician Paul Poulet in 1918. In a sociable sequence, each number is the sum of the proper divisors of the preceding number, i.e., the sum excludes the preceding number itself. For the sequence to be sociable, the sequence must be cyclic and return to its starting point.
Aliquot sequenceIn mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0. The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ1 or the aliquot sum function s in the following way: s0 = k sn = s(sn−1) = σ1(sn−1) − sn−1 if sn−1 > 0 sn = 0 if sn−1 = 0 ---> (if we add this condition, then the terms after 0 are all 0, and all aliquot sequences would be infinite sequence, and we can conjecture that all aliquot sequences are convergent, the limit of these sequences are usually 0 or 6) and s(0) is undefined.
NicomachusNicomachus of Gerasa (Νικόμαχος; 60-120 AD) was an Ancient Greek Neopythagorean philosopher from Gerasa, in the Roman province of Syria (now Jerash, Jordan). Like many Pythagoreans, Nicomachus wrote about the mystical properties of numbers, best known for his works Introduction to Arithmetic and Manual of Harmonics, which are an important resource on Ancient Greek mathematics and Ancient Greek music in the Roman period.
Mersenne primeIn mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p. The exponents n which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, .
66 (six) is the natural number following 5 and preceding 7. It is a composite number and the smallest perfect number. Six is the smallest positive integer which is neither a square number nor a prime number. It is the second smallest composite number after four, equal to the sum and the product of its three proper divisors (, and ). As such, 6 is the only number that is both the sum and product of three consecutive positive numbers. It is the smallest perfect number, which are numbers that are equal to their aliquot sum, or sum of their proper divisors.
Triangular numberA triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The nth triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is The triangular numbers are given by the following explicit formulas: where , does not mean division, but is the notation for a binomial coefficient.
Pierre de FermatPierre de Fermat (pjɛʁ də fɛʁma; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory.
Integer sequenceIn mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula n2 − 1 for the nth term: an explicit definition.
Almost perfect numberIn mathematics, an almost perfect number (sometimes also called slightly defective or least deficient number) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents .
120 (number)120 (one hundred [and] twenty) is the natural number following 119 and preceding 121. In the Germanic languages, the number 120 was also formerly known as "one hundred". This "hundred" of six score is now obsolete, but is described as the long hundred or great hundred in historical contexts. 120 is the factorial of 5, i.e., . the fifteenth triangular number, as well as the sum of the first eight triangular numbers, making it also a tetrahedral number.