In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion).
Let be a Riemannian manifold, and a Riemannian submanifold. Define, for a given , a vector to be normal to whenever for all (so that is orthogonal to ). The set of all such is then called the normal space to at .
Just as the total space of the tangent bundle to a manifold is constructed from all tangent spaces to the manifold, the total space of the normal bundle to is defined as
The conormal bundle is defined as the dual bundle to the normal bundle. It can be realised naturally as a sub-bundle of the cotangent bundle.
More abstractly, given an immersion (for instance an embedding), one can define a normal bundle of N in M, by at each point of N, taking the quotient space of the tangent space on M by the tangent space on N. For a Riemannian manifold one can identify this quotient with the orthogonal complement, but in general one cannot (such a choice is equivalent to a of the projection ).
Thus the normal bundle is in general a quotient of the tangent bundle of the ambient space restricted to the subspace.
Formally, the normal bundle to N in M is a quotient bundle of the tangent bundle on M: one has the short exact sequence of vector bundles on N:
where is the restriction of the tangent bundle on M to N (properly, the pullback of the tangent bundle on M to a vector bundle on N via the map ). The fiber of the normal bundle in is referred to as the normal space at (of in ).
If is a smooth submanifold of a manifold , we can pick local coordinates around such that is locally defined by ; then with this choice of coordinates
and the ideal sheaf is locally generated by . Therefore we can define a non-degenerate pairing
that induces an isomorphism of sheaves . We can rephrase this fact by introducing the conormal bundle defined via the conormal exact sequence
then , viz. the sections of the conormal bundle are the cotangent vectors to vanishing on .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding.
In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals the height of the defining ideal. For this reason, the height of an ideal is often called its codimension. The dual concept is relative dimension. Codimension is a relative concept: it is only defined for one object inside another.
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials desi ...
The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of g ...
2021
, ,
The design of envelopes with complex geometries often leads to construction challenges. To overcome these difficulties, resorting to discrete differential geometry proved successful by establishing close links between mesh properties and the existence of g ...