In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals the height of the defining ideal. For this reason, the height of an ideal is often called its codimension. The dual concept is relative dimension. Codimension is a relative concept: it is only defined for one object inside another. There is no “codimension of a vector space (in isolation)”, only the codimension of a vector subspace. If W is a linear subspace of a finite-dimensional vector space V, then the codimension of W in V is the difference between the dimensions: It is the complement of the dimension of W, in that, with the dimension of W, it adds up to the dimension of the ambient space V: Similarly, if N is a submanifold or subvariety in M, then the codimension of N in M is Just as the dimension of a submanifold is the dimension of the tangent bundle (the number of dimensions that you can move on the submanifold), the codimension is the dimension of the normal bundle (the number of dimensions you can move off the submanifold). More generally, if W is a linear subspace of a (possibly infinite dimensional) vector space V then the codimension of W in V is the dimension (possibly infinite) of the quotient space V/W, which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition and is dual to the relative dimension as the dimension of the kernel. Finite-codimensional subspaces of infinite-dimensional spaces are often useful in the study of topological vector spaces. The fundamental property of codimension lies in its relation to intersection: if W1 has codimension k1, and W2 has codimension k2, then if U is their intersection with codimension j we have max (k1, k2) ≤ j ≤ k1 + k2. In fact j may take any integer value in this range.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (9)
Intersection Numbers: Algebraic Counting Solutions
Explores intersection numbers for counting solutions to polynomial equations algebraically and their geometric significance in intersection theory and enumerative geometry.
Topology of Riemann Surfaces
Covers the topology of Riemann surfaces, focusing on orientation and orientability.
Matrix Operations: Multiplication and Identity
Covers matrix operations in Python, focusing on multiplication and identity matrix generation.
Show more
Related publications (13)
Related concepts (14)
Geometric topology
In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of simple homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently.
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Normal bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion). Let be a Riemannian manifold, and a Riemannian submanifold. Define, for a given , a vector to be normal to whenever for all (so that is orthogonal to ). The set of all such is then called the normal space to at .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.