Summary
In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect selected areas of it during subsequent etching, deposition, or implantation operations. Typically, ultraviolet light is used to transfer a geometric design from an optical mask to a light-sensitive chemical (photoresist) coated on the substrate. The photoresist either breaks down or hardens where it is exposed to light. The patterned film is then created by removing the softer parts of the coating with appropriate solvents, also known in this case as developers. Conventional photoresists typically consists of three components: resin, sensitizer, and solvent. Photolithography processes can be classified according to the type of light used, such as ultraviolet, deep ultraviolet, extreme ultraviolet, or X-ray. The wavelength of light used determines the minimum feature size that can be formed in the photoresist. Photolithography is a subclass of microlithography, the general term for processes that generate patterned thin films. Other technologies in this broader class include the use of steerable electron beams, or more rarely, nanoimprinting, interference, magnetic fields, or scanning probes. On a broader level, it may compete with directed self-assembly of micro- and nanostructures. Photolithography shares some fundamental principles with photography in that the pattern in the photoresist is created by exposing it to light — either directly by projection through a lens, or by illuminating a mask placed directly over the substrate, as in contact printing. The technique can also be seen as a high precision version of the method used to make printed circuit boards. The name originated from a loose analogy with the traditional photographic method of producing plates for lithographic printing on paper; however, subsequent stages in the process have more in common with etching than with traditional lithography.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (83)

Study of Linear Coupling in NEMS

Maxime Pitteloud

Cantilever beams are used as mass sensing device of chemical analyte by measuring the shift in frequency. However there resolution is linked to their size. As it become increasingly hard to produce sm
2021

Investigation of photoinduced effects in plasmonic nanocavities

Aqeel Ahmed

Light matter interaction can be boosted by several orders of magnitude by tailoring the photonic environment, thus enabling a wide range of applications. One particular example are plasmonic nanostruc
EPFL2021
Show more
Related concepts (67)
Photolithography
In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect selected areas of it during subsequent etching, deposition, or implantation operations. Typically, ultraviolet light is used to transfer a geometric design from an optical mask to a light-sensitive chemical (photoresist) coated on the substrate.
Semiconductor device fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips (such as NAND flash and DRAM) that are present in everyday electrical and electronic devices. It is a multiple-step photolithographic and physio-chemical process (with steps such as thermal oxidation, thin-film deposition, ion-implantation, etching) during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material.
Wafer (electronics)
In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. It undergoes many microfabrication processes, such as doping, ion implantation, etching, thin-film deposition of various materials, and photolithographic patterning.
Show more
Related courses (28)
MICRO-331: Microfabrication technologies
The student will learn process techniques and applications of modern micro- and nanofabrication technologies, as practiced in a standard clean room, with focus on silicon mainstream and microsystems t
MICRO-332: Microfabrication practicals
The goal of this course is to introduce students to the practical aspects of some basic micro-fabrication techniques.
MICRO-530: Nanotechnology
This course gives the basics for understanding nanotechnology from an engineer's perspective: physical background, materials aspects and scaling laws, fabrication and imaging of nanoscale devices.
Show more
Related lectures (166)
Clip Mask Fabrication
Showcases the practical steps of fabricating a mask for UV lithography.
Clip Mask Aligner Lithography
Covers UV lithography using a clip mask aligner for micro and nanofabrication.
Lithography: Photoresist Sensitivity and Modulation Transfer Function
Discusses photoresist properties in lithography resolution and the role of the optical transfer function.
Show more
Related MOOCs (4)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more